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A B S T R A C T

Applications of deep learning in financial market prediction have attracted widespread attention from investors
and scholars. From convolutional neural networks to recurrent neural networks, deep learning methods exhibit
superior ability to capture the non-linear characteristics of stock markets and, accordingly, achieve a high
performance on stock market index prediction. In this paper, we utilize the latest deep learning framework,
Transformer, to predict the stock market index. Transformer was initially developed for the natural language
processing problem, and has recently been applied to time series forecasting. Through the encoder–decoder
architecture and the multi-head attention mechanism, Transformer can better characterize the underlying rules
of stock market dynamics. We implement several back-testing experiments on the main stock market indices
worldwide, including CSI 300, S&P 500, Hang Seng Index, and Nikkei 225. All the experiments demonstrate
that Transformer outperforms other classic methods significantly and can gain excess earnings for investors.
1. Introduction

Stock market prediction is an external topic in the financial markets.
The fluctuation at every moment is related to the flow of enormous
wealth. Extreme cases can even affect the stability of financial sys-
tems, such as the financial crisis in 2008 (Anagnostidis, Varsakelis, &
Emmanouilides, 2016). In the long history of capital markets, many
prediction methods have been proposed, including technical analysis,
fundamental analysis, and time series analysis (Murphy, 1999). At
present, with the rapid development of computer science, especially
the progress in the field of deep learning, researchers hope that big
data may help to understand the dynamics of stock prices (Tsai &
Hsiao, 2010). More and more financial institutions are trying to make
investment decisions based on deep learning algorithms instead of hu-
man subjectivity. Due to the high complexity of financial markets, the
combination of deep learning techniques and financial time series fore-
casting is considered to be one of the most attractive topics (Cavalcante,
Brasileiro, Souza, Nobrega, & Oliveira, 2016).

Some existing literature has illustrated the performances of deep
learning frameworks on financial market prediction. The typical net-
work structures, such as Convolutional Neural Network (CNN), Re-
current Neural Network (RNN), and Long Short-term Memory Neural
Network (LSTM), are shown to have better prediction ability than tradi-
tional machine learning algorithms (Di Persio & Honchar, 2016; Fischer
& Krauss, 2018). (Selvin, Vinayakumar, Gopalakrishnan, Menon, &
Soman, 2017) compared three stock prediction models based on CNN,
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RNN, and LSTM, and demonstrated that LSTM has the best prediction
performance due to its long-term memory for stock sequences. Bao,
Yue, and Rao (2017) proposed to combine Autoencoder and LSTM for
stock price prediction. The results show that prediction accuracy and
profitability are improved compared to the single structure. Besides,
more and more cutting-edge deep learning frameworks are also being
tried on the stock prediction problem, including generative adversarial
networks (Zhang, Zhong, Dong, Wang, & Wang, 2019), reinforcement
learning (Li, Ni, & Chang, 2020), and so on. Jiang (2021) summarized
the recent progress of applications of deep learning in stock market
prediction.

Although deep learning has been widely used in stock market
prediction, traditional architectures, like CNN and RNN, still have some
limitations. For example, the pooling layers in CNN cause the loss of
valuable information by ignoring the part-whole relationships (Xi, Bing,
& Jin, 2017); RNN has been prone to result in gradient disappearance
and gradient explosion in the back-propagation process (Huang, Shen,
& Liu, 2019). To get rid of these drawbacks, Vaswani et al. (2017)
proposed an innovative deep learning architecture called Transformer,
which uses the attention mechanism instead of traditional CNN and
RNN frameworks and achieves great success in natural language pro-
cessing (NLP) problems. Compared with the sequential structure of
RNN and LSTM, the self-attention mechanism in Transformer can be
trained in parallel and it is easier to obtain global information. Re-
cently, Transformer has been widely applied in various fields, including
vailable online 14 July 2022
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computer vision (Parmar et al., 2018), audio processing (Li, Liu, Liu,
Zhao, & Liu, 2019a), chemical synthesis (Tetko, Karpov, Van Deursen,
& Godin, 2020), and so on.

Inspired by the success of Transformer in modeling the sequential
data in NLP, it is a straightforward idea to apply it to predict stock
markets. However, to the best of our knowledge, few researches eval-
uate the performance of Transformer on stock market prediction. The
existing results mainly focus on the applications of Transformer in sen-
timent analysis (Köksal & Özgür, 2021; Liu et al., 2019). They predicted
the direction of price movements by analyzing textual information like
financial news and comments from social media. In this paper, we
predict the stock market index based on the Transformer framework.
Different from previous studies, we model the daily closing price data
directly rather than unstructured textual data. We are concerned about
the specific values of the stock index in the future, not only the di-
rection of price movements. The main stock market indices worldwide
are considered, including the CSI 300 Index, the S&P 500 Index, the
Hang Seng Index, and the Nikkei 225 Index. Each dataset is split into
training and testing sets. The training set is used to train the model
parameters and learn the patterns hidden the data. The testing set is
used to evaluate the performance of trained models and make model
comparisons. Specifically, we preprocess the dataset first to make the
model converge better. Then the daily closing prices of the last few days
are fed into Transformer as input data. Through the encoder–decoder
architecture, Transformer outputs the predicted closing price of the
next day, which is compared with the actual value for evaluation. The
results are evaluated by the accuracy of prediction and the performance
of trading strategies. Compared with the traditional deep learning
models, such as CNN, RNN, and LSTM, Transformer exhibits higher
prediction accuracy and better net worth curves in all experiments.
These results demonstrate that Transformer outperforms other existing
models in stock market prediction.

This paper is organized as follows: Section 2 reviews the past
research relevant to our work. Section 3 introduces the background
knowledge of traditional deep learning models used in the experiments.
Section 4 details the architecture of Transformer used for stock pre-
diction. Section 5 describes the process of back-testing experiments,
including data processing, parameter settings, evaluation criteria, error
analysis, and net value analysis. Section 6 concludes this paper.

2. Related work

Stock market prediction methods are divided into two main cate-
gories: fundamental and technical analysis (Alzazah & Cheng, 2020).
Fundamental analysis relies on analyzing unstructured textual informa-
tion like financial news, earnings reports, and macroeconomic factors.
Technical analysis mainly focuses on analyzing historical stock prices
and trading information to predict future values. From different per-
spectives, many deep learning methods are proposed to predict the
stock market.

2.1. Fundamental analysis

The fundamental information includes financial reports, news, and
comments from social media like Twitter. Based on the textual informa-
tion, financial analysts analyze market sentiment and make investment
recommendations. Nguyen, Shirai, and Velcin (2015) examined the re-
lationship between sentiments in social media and stock market move-
ments, and demonstrated that sentiment analysis indeed improves the
performance of stock prediction. Sun, Lachanski, and Fabozzi (2016)
utilized the latent space model to investigate the potential use of textual
information from Twitter in predicting the stock market. Malandri,
Xing, Orsenigo, Vercellis, and Cambria (2018) demonstrated that public
mood is correlated with financial markets and affects the optimal asset
2

allocation.
Sentiment analysis is one of the key topics in NLP. Recently, re-
searchers performed sentiment analysis using text mining and compu-
tational techniques to automatically extract sentiments from text (Agar-
wal, Mittal, Bansal, & Garg, 2015). They aimed to classify the given
text into a positive, negative, or neutral view, and then predict the
direction of price movements (Rajput & Bobde, 2016). Sohangir, Wang,
Pomeranets, and Khoshgoftaar (2018) considered several typical neural
network models, including LSTM and CNN, to improve the performance
of sentiment analysis for StockTwits. Xing, Cambria, and Zhang (2019)
proposed a novel model termed ‘‘sentiment-aware volatility forecast-
ing’’, which incorporates market sentiment for stock return fluctuation
prediction. Besides, Picasso, Merello, Ma, Oneto, and Cambria (2019)
considered the combination of technical analysis and sentiment analysis
through deep learning techniques, which provides a novel way to
predict market trends.

Inspired by the success of attention mechanisms in computer vi-
sion, Jin, Yang, and Liu (2020) combined LSTM with attention mech-
anisms and proposed a stock market prediction model that can focus
on critical information. For the emerging stock markets, Köksal and
Özgür (2021) evaluated the performance of Transformers on a Twitter
dataset for Turkish sentiment analysis. de Oliveira Carosia, Coelho, and
da Silva (2021) identified the most suitable artificial neural network
architecture to perform sentiment analysis on financial news in the
Brazilian stock market.

In general, fundamental analysis and sentiment analysis mainly
focus on predicting the direction of price movements based on un-
structured textual information. Deep learning classification algorithms
improve the accuracy of prediction, but may ignore the amplitude of
fluctuation. A 1% rise in the stock price is in the same direction as a
10% rise. But they have quite different impacts on the net values. Thus,
in this paper, we consider modeling the stock price data directly.

2.2. Technical analysis

Technical analysis believes that all the information on the stock
market is reflected in the price movement. It is sufficient to model
and predict the stock prices directly. Deep learning techniques can
efficiently predict future values by learning the underlying patterns
from historical data (Long, Lu, & Cui, 2019).

In early studies, RNN and LSTM were typical frameworks used
to predict financial time series data. Selvin et al. (2017) compared
three stock prediction models based on CNN, RNN, and LSTM, and
demonstrated that LSTM has the best prediction performance due to
its long-term memory for stock sequences. Inspired by the applications
of attention mechanisms in neural machine translation, Cheng, Huang,
and Wu (2018) proposed an attention-based LSTM model to predict
stock price movement and make trading strategies. Chen and Ge (2019)
explored the attention mechanism in the LSTM network to predict stock
price movement in Hong Kong.

Vaswani et al. (2017) proposed the seminal architecture Trans-
former and achieved great success in NLP problems. After that, Li
et al. (2019b) applied Transformer to the time series prediction and
broke the memory bottleneck problem. Mohammdi Farsani and Pazouki
(2021) showed that Transformer based on self-attention has better
performance and lower computational complexity to predict time series
problems through the electricity consumption dataset in a power grid
and traffic data. Zhou et al. (2021) proposed an improved Transformer
model called Informer for long-sequence time series forecasting. Based
on similar ideas, this paper considers Transformer to predict the stock
market index. As far as we know, it is an innovative work to evaluate
the performance of Transformer on the stock market prediction.

3. Background

This section introduces several classic deep learning models for
stock market prediction, including CNN, RNN, and LSTM, which are

used in the following model comparisons.
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Fig. 1. An example of CNN architecture for stock market prediction. Here FC represents
the fully connected layer, C represents the one-dimensional convolutional layer (with
kernel size = 3 and stride = 1), and M represents the max-pooling layer (with kernel
size = 2 and stride = 2).

3.1. CNN

CNN is one of the most important neural networks in deep learning.
Through the combination of convolutional layers and pooling layers,
CNN achieves great success in image problems. It motivates researchers
to apply it to sequential data. Unlike two-dimensional image processing
problems, CNN uses the one-dimensional convolutional operator for
stock market prediction.

Assume that the observed sequence is 𝑿 = {𝑥𝑡 ∶ 𝑡 = 1,… , 𝑇 }, where
𝑥𝑡 ∈ R denotes the stock price at time 𝑡. First, we map the sequen-
tial data into a higher dimensional space through a fully connected
network, which outputs a new dataset �̃� =

{

�̃�𝑡 ∶ 𝑡 = 1,… , 𝑇
}

, where
�̃�𝑡 ∈ R𝑑 denotes the 𝑑-dimensional data. Then, the high dimensional
dataset is fed into an one-dimensional convolutional layer with 𝐾
filters, where the weights 𝑾 𝑘 = (𝒘1,… ,𝒘𝑗 ,… ,𝒘𝑚) ∈ R𝑑×𝑚 and biases
𝑏𝑘 ∈ R, 𝑘 = 1,… , 𝐾. The output of the convolutional layer is written as
𝒁 = {𝒛𝑘 ∶ 𝑘 = 1,… , 𝐾}, where 𝒛𝑘 ∈ R𝑇−𝑚+1 and

𝑧𝑘,𝑖 = 𝜙(𝑏𝑘+(𝑾 𝑘 ∗ �̃�)) = 𝜙(𝑏𝑘+
𝑚
∑

𝑗=1
⟨𝒘𝑗 , �̃�𝑚+𝑖−𝑗⟩), 1 ≤ 𝑖 ≤ 𝑇 −𝑚+1. (1)

Here (⋅ ∗ ⋅) represents the convolution operation, ⟨⋅, ⋅⟩ represents the
inner product in R𝑑 , and 𝜙 ∶ R ⟶ R is an activation function.

Through the one-dimensional convolutional operator, the original
sequence is transformed into a new sequence with extracted features.
Then the sequence may be subsampled through the pooling layer and
output the final result through a fully connected layer. The final result
should be a real value as the predicted stock price at time 𝑇 + 1.
Fig. 1 presents an example of the CNN architecture for stock market
prediction.

3.2. RNN–LSTM

For the time series prediction problem, the greatest challenge is
how to model the interdependent information in the context. An early
attempt is RNN, which tackles this problem by introducing an internal
state called a memory cell to store the past information. RNN succeeds
in characterizing the connection of sequential data in the context, but
this connection decays with the increase of gap distance. The long-term
dependence in RNN may cause the vanishing gradient and gradient
explosion problems in the back-propagation process (Huang et al.,
2019).

As a variant of RNN, LSTM improves models with a specific gate
structure. The interactive information are passed through three gates,
i.e., input gate 𝑖𝑡, forget gate 𝑓𝑡 and output gate 𝑜𝑡. The useful informa-
tion will be stored in the memory cells and passed to the next neuron,
while the useless part can be forgotten to save memory space. Fig. 2
presents the details of the LSTM architecture.

Given the observed sequence is 𝑿 = {𝑥𝑡 ∶ 𝑡 = 1,… , 𝑇 }, where
𝑥 ∈ R denotes the stock price at time 𝑡, the update steps of LSTM can
3

𝑡

be expressed as follows:

𝑓𝑡 = 𝜎
(

𝑊𝑓 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

,

𝑖𝑡 = 𝜎
(

𝑊𝑖 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

,

𝑐𝑡 = tanh
(

𝑊𝑐 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑐
)

,

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑐𝑡,

𝑜𝑡 = 𝜎
(

𝑊𝑜 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

,

ℎ𝑡 = 𝑜𝑡 ⋅ tanh
(

𝑐𝑡
)

,

(2)

where 𝑊 and 𝑏 are weights and bias for the corresponding connection,
𝜎 and tanh represent the sigmoid function and the tanh function,
and [⋅, ⋅] denotes the concat operation which merges the two vectors
together.

4. Transformer

Different from traditional deep learning models, we consider the
Transformer architecture for stock market prediction in this paper.
This section introduces the Transformer architecture in detail. Fig. 3
presents the whole framework of our Transformer model briefly. The
code for this paper is available upon request.

4.1. Embeddings and positional encoding

Embedding is a commonly used technique in NLP problems, which
maps the sparse and high-dimensional word vectors into a
low-dimensional space (Mikolov, Chen, Corrado, & Dean, 2013). Simi-
larly, here we feed the sequential data into the embedding layer. Given
the input data 𝑋 = {𝑥𝑡 ∶ 1,… , 𝑇 } ∈ R𝑇 , the 𝑑-dimensional embedding
layer outputs a matrix 𝐴 ∈ R𝑇×𝑑 through a fully connected network.

To characterize the sequential information in the time series, we add
the positional encoding to the embedded input. The sine and cosine
functions of different frequencies are used to encode the positional
information:

PE(𝑡,2𝑠) = sin
(

𝑡∕100002𝑠∕𝑑
)

,

PE(𝑡,2𝑠+1) = cos
(

𝑡∕100002𝑠∕𝑑
)

,
(3)

where 1 ≤ 2𝑠 ≤ 𝑑. Thus, the positional encoding information is
PE ∈ R𝑇×𝑑 . Then, the embedded input and positional encoding are
concatenated together and fed into the encoder layers.

4.2. Encoder–decoder

Transformer takes the encoder–decoder architecture, which is widely
used in machine translation problems (Cho, Merriënboer, Bahdanau, &
Bengio, 2014). The encoder compresses the key information of the in-
put sequence into a fixed-length vector, and then the decoder converts
it into an output (Sutskever, Vinyals, & Le, 2014). The encoder–
decoder architecture provides an approach to deal with long sequential
data (Bahdanau, Cho, & Bengio, 2014).

The encoder in Fig. 3 (left block) is composed of a stack of 𝑀 layers
with identical structures. Each layer includes two sub-layers: a multi-
head self-attention layer and a fully connected neural network. The
residual connection and normalization are used in each sub-layer to
improve the performance. The decoder in Fig. 3 (right block) is similar
to the encoder. The only difference is that it includes two multi-head
self-attention layers. Different from the original decoder in Vaswani
et al. (2017), here we do not use the mask attention mechanism since
all the inputs in the decoder are observed historical data without future
information.
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Fig. 2. Long Short-Term Memory network.
Fig. 3. The architecture of Transformer for stock price prediction. Here 𝑥1 , 𝑥2 ,… , 𝑥𝑇 represent the historical stock prices as the input data. Finally, the model outputs a real value
𝑥𝑇+1 as the predicted stock price at time 𝑇 + 1.
4.3. Self-attention

The idea of attention mechanisms may be the most exciting inno-
vation in deep learning in recent years (Mnih, Heess, Graves, et al.,
2014). It focuses limited attention on the important local areas so as to
save computational resources and obtain the most useful information
quickly. In early works, attention mechanisms are often used with CNN
and RNN frameworks together (Bahdanau et al., 2014). Vaswani et al.
(2017) first demonstrated that deep learning models could get rid of
traditional CNN and RNN frameworks and proposed the Transformer
architecture, which uses self-attention mechanisms only. Just as they
said, ‘‘attention is all you need’’.

The self-attention mechanism in Vaswani et al. (2017) is defined as
follows:

Attention (𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑑

)

𝑉 , (4)

where 𝑄 ∈ R𝑇×𝑑 , 𝐾 ∈ R𝑇×𝑑 and 𝑉 ∈ R𝑇×𝑑 are query, key and value
matrices respectively, which are outputs of three different linear layers
with the same input. Fig. 4 presents the structure of the self-attention
mechanism.

4.4. Multi-head attention

The self-attention mechanism provides a new perspective to focus
on the important local information. Vaswani et al. (2017) also men-
tioned that multiple self-attention, called multi-head attention, can
4

Fig. 4. The structure of the self-attention mechanism.

achieve better performance. In the multi-head attention mechanism,
each attention function is executed in parallel with the respective pro-
jected version of the query, key, and value matrices. Then the outputs of
all attention functions are concatenated together to produce the final
result through a linear layer. The formula of multi-head attention is
expressed as follows:

MultiHead (𝑄,𝐾, 𝑉 ) = Concat
(

head1,head2,… ,headℎ
)

𝑊 𝑂 ,

head𝑖 = Attention
(

𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖

)

,
(5)

where 𝑖 = 1,… , ℎ and 𝑊 𝑄
𝑖 , 𝑊 𝐾

𝑖 , 𝑊 𝑉
𝑖 , 𝑊 𝑂 are weights of corresponding

networks.
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𝑥

Fig. 5. A moving window approach is utilized to construct features and labels from the observed time series. In each prediction, 𝑇 data marked with blue are used as the input
features of the model, and the next data marked with green is used as the output label.
Table 1
The main hardware and software configurations used for experiments.

Configuration

CPU AMD Ryzen 7 5800H
GPU NVIDIA QUADRO GV100
Anaconda version Anaconda 4.5.11
Python version Python 3.7
Pytorch version Pytorch 1.7.0

The multi-head attention mechanism allows the model to jointly
attend to information from different representation subspaces at dif-
ferent positions. It has been prone to be a better choice than single
self-attention.

5. Experiments

In this paper, we implement several back-testing experiments for
main stock market indices worldwide to demonstrate the performance
of Transformer in stock market prediction. Since the United States,
China and Japan are the top three economies in the world and their
GDP made up about 50% of the world economy in 2020, we consider
four stock market indices from these countries to represent the global
market: the Shanghai and Shenzhen 300 Index (CSI 300) in China, the
Standard & Poor’s 500 Index (S&P 500) in the US, the Nikkei 225 Index
(N225) in Japan, and the Hang Seng Index (HSI) in Hong Kong. We
model the daily closing prices of these indices over the period from
Jan 1, 2010 to Dec 31, 2020. The hardware and software configurations
used for experiments are shown in Table 1.

5.1. Data processing

The observed data for each index is a one-dimensional time series of
daily closing prices. First, we split the whole dataset into the training
and testing sets. The training set includes the first 80% data, which is
used to train model parameters. The last 20% data as the testing set is
used to evaluate the performance of models.

To reduce the volatility of datasets and obtain a robust model, we
normalize the original data (including the training and testing sets) as
follows:

̂ 𝑡 =
𝑥𝑡 − 𝜇
𝜎

, (6)

where �̂�𝑡 is the normalized price at time 𝑡, 𝜇 and 𝜎 are the sample mean
and sample standard deviation of the training set.

In each prediction, we use the previous 𝑇 closing prices to predict
the closing price on the next trading day 𝑇 + 1. A moving window
approach is utilized to construct features and labels from the observed
time series. Fig. 5 presents the procedure in detail.

5.2. Hyper-parameters setting

We implement a large number of experiments on the training set to
determine the optimal hyper-parameters in advance. The batch size for
the mini-batch training is set as 16. We use the mean squared error as
5

the loss function to compare predicted values with actual values. The
Adam optimizer with a learning rate of 0.0001 is used for training mod-
els. We set the number of epochs as 1000 to guarantee the convergence
of the training process. Fig. 6 presents the loss functions varying with
epochs for each dataset. They exhibit significant downward trends and
converge within 1000 epochs eventually.

To avoid the overfitting problem, we apply the dropout technique
for each sub-layer, where the dropout rate is set as 0.1. For the input
data, we take the input length for Encoder as 𝑇 = 9 and Decoder as
𝑁 = 2. The embedding dimension for input data is 𝑑 = 32. Besides, the
initial values of parameters waiting for training, such as weights and
biases in neural networks, are sampled from the uniform distribution
[−1, 1] independently.

5.3. Evaluation criteria

The performance of models is evaluated from two perspectives:
prediction accuracy and net value analysis. For prediction accuracy, we
compare the predicted values with the true data in the testing set and
calculate the prediction errors. Three common indicators for prediction
errors are used to evaluate the performance:

• Mean Absolute Error (MAE):

MAE = 1
𝑁

𝑁
∑

𝑖=1
|�̂�𝑖 − 𝑦𝑖|, (7)

where �̂�𝑖 is the predicted value, 𝑦𝑖 is the true value, and 𝑁 is
the sample size. MAE is an average of the absolute difference
between the predicted and actual values, which can avoid the
mutual cancellation of errors. It reflects the absolute errors in
forecasting (Willmott & Matsuura, 2005).

• Mean Squared Error (MSE):

MSE = 1
𝑁

𝑁
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2, (8)

where �̂�𝑖 is the predicted value, 𝑦𝑖 is the true value, and 𝑁 is
the sample size. MSE is a commonly used indicator to measure
the performance of time series forecasting. Similarly with MAE,
it also measures the absolute errors in forecasting (Lehmann &
Casella, 2006). Here MSE is used as the loss function for model
training.

• Mean Absolute Percentage Error (MAPE):

MAPE = 1
𝑁

𝑁
∑

𝑖=1
|

�̂�𝑖 − 𝑦𝑖
𝑦𝑖

| × 100%, (9)

where �̂�𝑖 is the predicted value, 𝑦𝑖 is the true value, and 𝑁 is
the sample size. MAPE also measures the prediction accuracy.
Different from MAE and MSE, MAPE is a relative indicator to
measure the percentage of errors (Myttenaere, Golden, Le Grand,
& Rossi, 2016).

The three indicators measure the prediction accuracy of models
from different perspectives. MAE and MSE measure the absolute errors
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𝑦

Fig. 6. The loss functions of four datasets in the training process.
of prediction, and MAPE reports the relative errors. The smaller values
of these indicators mean better performance.

We also evaluate the performance of models from net values by con-
structing a simple trading strategy according to the predicted values.
The trading strategy is designed as follows: if the predicted value �̂�𝑡+1
is larger than the latest observed value 𝑦𝑡, we long one position index; if
̂𝑡+1 is smaller than 𝑦𝑡, we short one position index; otherwise, we hold
no position. So, the return at time 𝑡 + 1 can be expressed as follows:

𝑅𝑡+1 = ln
𝑦𝑡+1
𝑦𝑡

× sign(�̂�𝑡+1 − 𝑦𝑡), (10)

where sign(⋅) denotes the sign function. Then we can calculate the net
value (NV) of the strategy as follows:

NV𝑡 = 1 +
𝑡

∑

𝑖=2
𝑅𝑖, (11)

for 𝑡 ≥ 2 and NV1 = 1. The net value represents the total return of the
strategy. Here we assume that the transaction cost is 1‰ by referring
to the rates in the global main markets.

Besides the total return, we are also concerned on the risks of
strategies, which is measured by volatility, max drawdown, and Sharpe
ratio:

• Volatility: a classic measure of risk, which is defined as the
standard deviation of returns:

Volatility = 𝜎(𝑅𝑖). (12)

So the model with lower volatility has less risk.
• Max Drawdown: an important risk indicator used to describe the

worst situation in the whole investment period, which is defined
as follows:

Max Drawdown = max
𝑖<𝑗

NV𝑗 − NV𝑖

NV𝑖
. (13)

So the model with smaller max drawdown is better.
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• Sharpe ratio: the most commonly used indicator in portfolio
management, proposed by William F. Sharpe (Sharpe, 1994). It
takes both returns and risks into consideration and is defined as
follows:

Sharpe ratio =
𝐸(𝑅𝑡) − 𝑅𝑓

𝜎(𝑅𝑡)
, (14)

where 𝐸(𝑅𝑡) denotes the expected daily return, 𝜎(𝑅𝑡) denotes the
standard deviation of daily return and 𝑅𝑓 denotes the risk-free
interest rate. A higher Sharpe ratio means a better model.

5.4. Error analysis

Here we report the outputs of back-testing experiments to demon-
strate the performance of our Transformer model. Considering the
uncertainty of deep learning methods, we implement 10 independent
runs of learning and validation for each dataset. The means and stan-
dard errors of the three accuracy indicators are presented in Table 2.
We also perform the Mann–Whitney 𝑈 test to show the advantages of
Transformer are significant (Mann & Whitney, 1947). Table 3 reports
the 𝑃 -values of the Mann–Whitney 𝑈 test on the difference in MSE
between Transformer and compared models.

From Table 2, all three indicators demonstrate that our Trans-
former model outperforms other classic methods in prediction ac-
curacy. Whether from the perspective of absolute errors (MAE and
MSE) or relative errors (MAPE), Transformer obtains the smallest mean
prediction errors among the compared models in all datasets. Table 3
demonstrates that the advantages of Transformer over compared mod-
els are significant. Besides, our Transformer model reports a minor
standard error in each setting. It means that our model is robust for
model training.

Fig. 7 presents one of the fitted curves generated by Transformer
for four main stock market indices. It is observed that the predicted
values are quite close to the real data in both training and testing sets.
Fig. 8 compares the fitted curves generated by CNN, RNN, LSTM and
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Fig. 7. The predicted curves of the Transformer model. Here the blue lines mean the real stock index prices data. The orange lines represent the predicted values in the training
set and the green lines represent the predicted values in the testing set.
Table 2
The means and standard errors of three indicators across 10 independent experiments
for four datasets.

Index Models MAE MSE MAPE

CSI 300

RNN 0.0825(0.0035) 0.0127(0.0010) 1.2986(0.0503)
CNN 0.0948(0.0020) 0.0170(0.0006) 1.4816(0.0306)
LSTM 0.0693(0.0091) 0.0091(0.0002) 1.1216(0.0144)
Transformer 0.0641(0.0025) 0.0079(0.0004) 0.9549(0.0317)

Nikkei 225

RNN 0.0680(0.0046) 0.0086(0.0004) 1.4477(0.1044)
CNN 0.0851(0.0036) 0.0158(0.0009) 1.7881(0.0870)
LSTM 0.0585(0.0025) 0.0066(0.0003) 1.2438(0.0572)
Transformer 0.0471(0.0017) 0.0043(0.0002) 1.0072(0.0343)

Hang Seng

RNN 0.1719(0.0073) 0.0446(0.0040) 1.9048(0.2489)
CNN 0.1506(0.0122) 0.0353(0.0059) 1.7989(0.1514)
LSTM 0.0985(0.0047) 0.0164(0.0013) 1.1623(0.0584)
Transformer 0.0881(0.0025) 0.0138(0.0005) 1.0403(0.0271)

S&P 500

RNN 0.1359(0.0274) 0.0321(0.0087) 2.2567(0.4682)
CNN 0.1533(0.0188) 0.0414(0.0101) 2.5158(0.2709)
LSTM 0.1092(0.0256) 0.0236(0.0099) 1.7768(0.4001)
Transformer 0.0814(0.0131) 0.0145(0.0037) 1.3800(0.2163)

Table 3
𝑃 -values of the Mann–Whitney 𝑈 test on the difference in MSE between transformer
and compared models.

CSI 300 Nikkei 225 Hang Seng S&P 500

RNN 0.0001 0.0001 0.0001 0.0001
CNN 0.0001 0.0001 0.0001 0.0001
LSTM 0.0001 0.0001 0.0001 0.0001

Transformer. It also demonstrates that our Transformer model has the
best prediction accuracy among the compared methods in all datasets.

5.5. Net value analysis

Besides the prediction accuracy, we also evaluate the performance
of models by net values, which are generated by the given trading
strategy in Section 5.3. Table 4 reports the total return, volatility,
7

max drawdown, and Sharpe ratio of different models for four datasets.
We also consider the passive strategy, which means ‘‘buy & hold’’
(B&H), as a benchmark. Our Transformer model reports the highest
total return and Sharpe ratio among the compared models in all four
datasets. It also has a competitive performance on the volatility and
max drawdown. Fig. 9 presents the net value curves of different models
in each dataset. They demonstrate that investors can gain higher excess
earnings with the prediction by Transformer.

Again, we perform the Mann–Whitney 𝑈 test to show the excess
earnings of Transformer are significant. Table 5 reports the 𝑃 -values
of the Mann–Whitney 𝑈 test on the difference in total returns between
Transformer and compared models. It demonstrates that the total return
of Transformer is superior to other strategies significantly.

6. Conclusion

This paper evaluates the performance of Transformer in stock mar-
ket prediction. Through several experiments on four main stock market
indices, we demonstrate that our Transformer model outperforms other
traditional deep learning models and the buy & hold strategy signifi-
cantly from the perspectives of both prediction accuracy and net value
analysis. It implies that financial time series forecasting is a promising
application area for the Transformer architecture. Investors can gain
higher excess earnings with the prediction by Transformer in practice.

The superior performance of Transformer may mainly owe to the
multi-head attention mechanism. Note that financial time series, espe-
cially the movements of stock indices, are highly noisy. The multi-head
attention mechanism is an efficient way to capture important informa-
tion while filtering out irrelevant noise. Compared with the typical CNN
and RNN architectures, Transformer has a stronger ability to extract
key features, and thus achieves better prediction performance. This
paper provides empirical evidence on Transformer’s performance in
stock market prediction. More theoretical results will be explored in
the future.

There are also some limitations in this study. This paper only
considers the prediction of a single stock market index separately,
which is a one-dimensional financial time series data. Actually, the
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Fig. 8. The predicted curves of different models in the testing set.

Fig. 9. Net value curves of different models for four datasets.
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Table 4
The performance of the trading strategy for four datasets.

Index Models Return(%) Volatility(%) MaxDrawdown(%) Sharpe ratio

CSI 300

B&H 49.03 1.34 −17.52 1.0868
RNN 48.03 1.34 −19.94 1.0636
CNN 19.50 1.34 −24.32 0.4323
LSTM 30.06 1.34 −18.69 0.6657
Transformer 86.88 1.33 −17.14 1.9384

Nikkei 225

B&H 15.48 1.35 −37.49 0.3370
RNN 5.82 1.35 −34.35 0.1267
CNN 16.71 1.34 −34.34 0.3643
LSTM 38.28 1.34 −24.15 0.8342
Transformer 51.86 1.34 −19.08 1.1304

Hang Seng

B&H 4.03 1.26 −32.92 0.0932
RNN 25.74 1.26 −17.07 0.5955
CNN 17.36 1.26 −29.10 0.4008
LSTM 31.50 1.26 −23.02 0.7280
Transformer 36.41 1.26 −28.87 0.8412

S&P 500

B&H 30.53 1.63 −41.43 0.5353
RNN 18.22 1.63 −23.13 0.3193
CNN 17.23 1.63 −32.83 0.3023
LSTM 45.02 1.63 −34.55 0.7900
Transformer 56.35 1.62 −28.50 0.9892
B

B

C

C

C

C

d

D

F

H

J

J

K

L

L

L

Table 5
𝑃 -values of the Mann–Whitney 𝑈 test on the difference in total returns between
transformer and compared models.

CSI 300 Nikkei 225 Hang Seng S&P 500

B&H 0.0001 0.0001 0.0001 0.0001
RNN 0.0001 0.0001 0.0001 0.0001
CNN 0.0001 0.0001 0.0001 0.0001
LSTM 0.0001 0.0001 0.0001 0.0001

global financial markets are highly correlated with each other. How
to utilize the mutual information and model the high-dimensional time
series data jointly is an interesting topic that will be discussed in future
work. Besides, the applications of Transformer in many other financial
markets, such as the commodities futures market and bond market, are
valuable things to explore.
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