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Abstract
High-dimensional covariance matrix estimation plays a central role in multivariate statisti-
cal analysis. It is well-known that the sample covariance matrix is singular when the sam-
ple size is smaller than the dimension of the variable, but the covariance estimate must 
be positive-definite. This motivates some modifications of the sample covariance matrix 
to preserve its efficient estimation of pairwise covariance. In this paper, we modify the 
sample correlation matrix using the Bagging technique. The proposed Bagging estimator 
is flexible for general continuous data. Under some mild conditions, we show theoretically 
that the Bagging estimator can ensure positive-definiteness with probability one in finite 
samples. We also prove the consistency of the bootstrap estimator of Pearson correlation 
and the consistency of our Bagging estimator when the dimension p is fixed. Simulation 
results and a real application are provided to demonstrate that our method strikes a better 
balance between RMSE and likelihood, and is more robust, than other existing estimators.
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1 Introduction

Covariance matrix estimation is a fundamental topic in multivariate statistical analyses. 
Traditionally, the sample covariance matrix is a convenient and efficient estimator when 
sample size n is much larger than dimension p. However, in recent years, more and more 
high-dimensional datasets with small n and large p have appeared in various applications. 
For instance, investors track thousands of assets in the financial market, but there are only 
hundreds of daily trading observations per year (Bodnar et al., 2018). For cancer diagnosis 
with genetic data, thousands of gene expressions can be measured using microarray tech-
niques simultaneously, but patient cases are often rare and limited (Best et al., 2015). It is 
well-known that the sample covariance matrix is singular when p > n , but a valid covari-
ance matrix must be positive-definite. This fatal flaw hampers the application of sample 
covariance matrix in high-dimensional multivariate statistical analyses, including discri-
minant analysis and regression models. Furthermore, Johnstone (2001) showed that the 
sample covariance matrix distorts the eigen-structure of the population covariance matrix 
and is ill-conditioned when p is large. Generally, the sample covariance matrix is an awful 
estimator in high-dimensional cases.

Although its performance is poor as a whole (Fan et al., 2016), each entry in the sample 
covariance matrix is still an efficient estimator of pairwise covariance among variables. 
This motivates the design of a modified version that retains efficient estimation of pair-
wise covariance, while avoiding the drawbacks. Ledoit and Wolf (2004) proposed a shrink-
age method by taking a weighted linear combination of the sample covariance matrix and 
the identity matrix. The resulting matrix is positive-definite, invertible, and preserves the 
eigenvector structure. There is existing literature on how to choose the optimal weighted 
parameter to obtain better asymptotic properties (Ledoit and Wolf, 2004; Mestre and Lagu-
nas, 2005; Mestre, 2008). However, the shrinkage operation leads to a biased estimator in 
finite samples. If the covariance matrix is sparse, thresholding methods may be the most 
intuitive idea in high-dimensional analyses. Bickel and Levina (2008) applied the hard-
thresholding method to the sample covariance matrix and showed its asymptotic consist-
ency. After that, other generalized thresholding rules were proposed and tried, such as 
banding (Bickel and Levina, 2008; Wu and Pourahmadi, 2009), soft-thresholding (Roth-
man et al., 2009), and adaptive thresholding (Cai and Liu, 2011). For further theoretical 
results, Cai et  al. (2010) derived the optimal rate of convergence for estimating the true 
covariance matrix, and Cai and Zhou (2012) explored the operator norm, Frobenius norm 
and L1 norm of the estimator and its inverse. The thresholding idea is an efficient method 
to obtain a sparse estimator, but it is hard to ensure positive-definiteness for finite samples. 
In fact, Guillot and Rajaratnam (2012) showed that a thresholded matrix may lose positive-
definiteness quite easily. Fan et al. (2016) also demonstrated that the thresholding method 
sacrifices a great deal of entries and information in the sample covariance matrix to attain 
positive-definiteness.

From the perspective of random matrix theory, Marzetta et al. (2011) constructed a pos-
itive-definite estimator by random dimension reduction. Tucci and Wang (2019) consid-
ered a random unitary matrix with Harr measure as an alternative random operator. In this 
paper, inspired by the work of random matrix theory and some practical considerations, 
we modify the sample correlation matrix using the Bagging technique. Bagging (Bootstrap 
Aggregating), proposed by Breiman (1996), is an ensemble algorithm designed to improve 
the stability and accuracy of machine learning algorithms used in statistical inference. Sur-
prisingly, we find that the Bagging technique can help achieve a positive-definite estimate 
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when p > n . Through a resampling procedure, the Bagging technique can “create” more 
linearly independent data to transform the problem into traditional cases where n/p is large. 
This paper contributes to the field in the following aspects: (a) we propose a new high-
dimensional correlation matrix estimator for general continuous data; (b) we prove theo-
retically the Bagging estimator ensures positive-definiteness with probability one in finite 
samples, while the estimator is consistent when p is fixed; (c) we demonstrate that the Bag-
ging estimator is competitive with existing approaches through a large number of simula-
tion studies in various scenarios and a real application.

This paper is organized as follow: Sect.  2 proposes the Bagging estimator. Section  3 
proves some relevant theoretical results. Section  4 compares our method with existing 
approaches through simulation studies in various scenarios and Sect.  5 provides a real 
application. Section 6 concludes the paper.

2  Bagging estimator

For a given training set D of size n, the Bagging technique first generates m new training 
sets d1,⋯ , dm , each of size n, by sampling from D uniformly with replacement. This step 
is called bootstrap sampling. These m bootstrap resampling sets are then fitted separately 
to produce estimates h1,⋯ , hm . The individual estimates h1,⋯ , hm are then combined by 
averaging or voting to generate the final estimate hBag . The procedure of the Bagging algo-
rithm is illustrated in Fig. 1.

Generally, Bagging can improve the stability and accuracy of almost every regression 
and classification algorithm (Breiman, 1996). In this paper, we use the Bagging technique 
to modify the sample correlation matrix.

Let � = (Xij)n×p be the observed dataset. Xij denotes the i-th observation for the j-th vari-
able where i = 1,⋯ , n and j = 1,⋯ , p . Assume row vectors Xi = (Xi1,⋯ ,Xip) are i.i.d. 
for i = 1,⋯ , n , and follow a continuous and irreducible p-dimensional distribution with 
mean � and positive-definite covariance matrix � , e.g., Xi ∼ Np(�,�) . Here an irreducible 

Fig. 1  The procedure of the Bag-
ging algorithm
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p-dimensional distribution denotes a p-dimensional distribution where the p components are 
irreducible (see Definition 5 for details). We are interested in estimating the p × p covariance 
matrix � = (�ij)p×p for fixed p and finite sample size n when p > n . The sample covariance 
matrix is defined as

where �̄ = �n×1 ⋅ (
1

n

∑n

i=1
Xi) is the matrix of sample mean vectors.

According to the variance-correlation decomposition, � = ��� , where � is the diagonal 
matrix of standard deviations and � is the correlation matrix with diagonal elements equal to 
1. Thus, we may estimate � and � separately (Barnard et al., 2000). If � is estimated by the 
sample variance, i.e., �̂ = diag(�)1∕2 , then the problem becomes to estimate the correlation 
matrix � . The corresponding sample version is defined as follows:

Definition 1 (Sample Correlation Matrix) Let � = (Yij)n×p be the matrix normalized 
from the original dataset � by columns, i.e., Yij = (Xij − �̂�j)∕�̂�j where �̂�j =

1

n

∑n

i=1
Xij and 

�̂�2
j
=

1

n−1

∑n

i=1
(Xij − �̂�j)

2 . Then, the sample correlation matrix � is defined as

Note that rank(�) = n − 1 , thus � is still singular when p > n and hence not a valid esti-
mator of � . Therefore, a modification on R is a must.

Definition 2 (Bagging Estimator) For a given dataset L = {X1,⋯ ,Xn} , consider a simple 
resampling set of n observations with replacement, e.g., L(t) = {X

(t)

1
,⋯ ,X(t)

n
} . Using these 

resampled data construct the matrix �(t) , which is used to form a sample correlation matrix 
�(t) . Repeat this process independently for T times. Then, the Bagging estimator is defined 
as �Bag =

�

�

∑�

�=�
�(�).

The Bagging algorithm is summarized in Algorithm 1 in detail. The complete algorithm is 
simple, easy to implement, and requires few assumptions. Common assumptions, such as the 
data being Gaussian and the covariance matrix being sparse, are unnecessary in our algorithm. 
Compared with approaches that rely on these assumptions, our Bagging estimator is more 
flexible for general continuous data. 

Algorithm 1 Bagging Algorithm for Correlation Matrix Estimation
1: Given dataset L = {X1, · · · ,Xn}.
2: for t-th iteration do
3: Resample n samples in L with replacement to construct X(t).
4: Normalize the matrix X(t) by columns to obtain Y(t).
5: Calculate the sample correlation matrix R(t).
6: end for
7: Average the outputs in iterations as Bagging estimator RBag.

� =
1

n − 1
(� − �̄)�(� − �̄),

� =
�

� − �
�

�
�.
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3  Theoretical properties

3.1  Positive‑definiteness

A valid correlation matrix estimator must be positive-definite. As we shall show, our new 
estimator �Bag is positive-definiteness with probability one for finite samples, although 
each �(t) is still singular. It should be noted that this “magic” operation works only for the 
sample correlation matrix � , rather than the sample covariance matrix � . This may par-
tially explain why this simple procedure has not been explored up till now.

For �Bag , we have the following decomposition,

where �(t) = (Y
(t)

ij
)n×p is the matrix normalized from the resampled dataset �(t) by columns, 

i.e., Y (t)

ij
= (X

(t)

ij
− �̂�

(t)

j
)∕�̂�

(t)

j
 , where �̂�(t)

j
=

1

n

∑n

i=1
X
(t)

ij
 and (�̂�(t)

j
)2 =

1

n−1

∑n

i=1
(X

(t)

ij
− �̂�

(t)

j
)2 . 

Here

is a random matrix, which contains all resampled observations.
According to Equation (1), it is sufficient to show that Pr(rank(�) = p) = 1 for large T. 

First, we clarify several definitions regarding random variables for convenience.

Definition 3 (Continuous) A random variable X is said to be continuous if Pr(X ∈ B) = 0 
for any finite or countable set B of points of the real line.

Definition 4 (Irreducible) Let W be a continuous random variable. Given random vari-
ables U1,⋯ ,Un , if W|U1,⋯ ,Un is still a continuous random variable, W is said to be irre-
ducible given U1,⋯ ,Un.

Definition 5 For continuous random variables U1,⋯ ,Un , if every Ui is irreducible given 
the remaining random variables, we say U1,⋯ ,Un are irreducible.

Corollary 1 Let W be a continuous random variable. If W is independent of random vari-
ables U1,⋯ ,Un , then W is irreducible given U1,⋯ ,Un.

Proof If W is independent of U1,⋯ ,Un , then W|U1,⋯ ,Un is identically distributed with W 
and is a continuous random variable.   ◻

Definition 6 (Linearly Irreducible) Let W be a continuous random variable. Given random 
variables U1,⋯ ,Un , if

for any a1,⋯ , an ∈ ℝ , W is said to be linearly irreducible given U1,⋯ ,Un.

(1)�
Bag =

1

T

T∑
t=1

�
(t) =

1

(n − 1)T

T∑
t=1

�
(�)�

�
(t) =

1

(n − 1)T
�
�
�,

� =

⎛⎜⎜⎜⎝

�(1)

�(2)

⋮

�(T)

⎞⎟⎟⎟⎠
nT×p

Pr(W = a1U1 +⋯ + anUn|U1,⋯ ,Un) = 0,
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Definition 7 For continuous random variables U1,⋯ ,Un , if every Ui is linearly irreducible 
given the remaining random variables, we say U1,⋯ ,Un are linearly irreducible.

Corollary 2 Let W be a continuous random variable. If W is irreducible given U1,⋯ ,Un , 
then W is linearly irreducible given U1,⋯ ,Un.

Proof By Definition  4, W|U1,⋯ ,Un is a continuous random vari-
able. So Pr(W = a|U1,⋯ ,Un) = 0 for any a ∈ ℝ . In particular, 
Pr(W = a1U1 +⋯ + anUn|U1,⋯ ,Un) = 0 for any a1,⋯ , an ∈ ℝ .   ◻

The following lemma provides a criterion for being linearly irreducible (See Appen-
dix A for detailed proofs of Lemmas and Theorems).

Lemma 1 Let U1,⋯ ,Un be continuous random variables. If

for any a1,⋯ , an ∈ ℝ which are not all zero, then U1,⋯ ,Un are linearly irreducible.

Inspired by the rank of the Gaussian ensemble in random matrix theory (Tao and Vu 
2010), we show a general result for the rank of a random matrix.

Theorem 1 For random matrix � = (Mij)q×p , where Mij are continuous random variables, 
if � satisfies the following conditions: (1) By rows, Mi1,⋯ ,Mip are linearly irreducible for 
all i; (2) By columns, M1j,⋯ ,Mqj are linearly irreducible for all j, then we have

Specifically, consider the rank of random matrix �,

For simplicity, delete the redundant rows in � , which does not change the rank of the 
matrix. The redundancy may come from identical resampling sets, i.e., �(t1) ≡ �(t2) , or may 
come from repetitive observations in the same resampling sets, i.e., X(t)

i1
≡ X

(t)

i2
≡ Xi ∈ L

(t) . 
After eliminating these redundant rows, let T̃  be the number of distinct resampling sets in 
total T resampling sets, and let qt be the number of non-repetitive observations in L(t).

Note that in each resampling set, there exists a perfect linear relationship among non-
repetitive rows due to the sample mean �̂�(t)

j
 , which decreases the degrees of freedom of 

observations by one. Thus, there are only qt − 1 free observations in each resampling 

Pr(a1U1 +⋯ + anUn = 0) = 0

Pr(rank(�) = min(q, p)) = 1.

� =

⎛⎜⎜⎝

�(1)

⋮

�(T)

⎞⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
(1)

11
−�̂�

(1)

1

�̂�
(1)

1

X
(1)

12
−�̂�

(1)

2

�̂�
(1)

2

⋯
X
(1)

1p
−�̂�

(1)
p

�̂�
(1)
p

⋮ ⋮ ⋮

X
(1)

n1
−�̂�

(1)

1

�̂�
(1)

1

X
(1)

n2
−�̂�

(1)

2

�̂�
(1)

2

⋯
X
(1)
np −�̂�

(1)
p

�̂�
(1)
p

⋮ ⋮ ⋮

X
(T)

11
−�̂�

(T)

1

�̂�
(T)

1

X
(T)

12
−�̂�

(T)

2

�̂�
(T)

2

⋯
X
(T)

1p
−�̂�

(T)
p

�̂�
(T)
p

⋮ ⋮ ⋮

X
(T)

n1
−�̂�

(T)

1

�̂�
(T)

1

X
(T)

n2
−�̂�

(T)

2

�̂�
(T)

2

⋯
X
(T)
np −�̂�

(T)
p

�̂�
(T)
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Tn×p

.
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set. Without loss of generality, assume the first qt − 1 rows in each resampling set are 
non-repetitive. We have submatrix � of �,

Here submatrix � = (G
(t)

ij
) has the same rank as � , where G(t)

ij
=

X
(t)

ij
−�̂�

(t)

j

�̂�
(t)

j

 , i = 1,⋯ , qt − 1 , 

j = 1,⋯ , p , t = 1,⋯ , T̃ .

Lemma 2 G(t)

ij
 is a continuous random variable.

According to Theorem  1 and Lemma 2, we show 
Pr(rank(�) = min(

∑T̃

t=1
(qt − 1), p)) = 1.

Theorem 2 For random matrix � , we have

The total number of distinct sets is 
(
n + k − 1

k

)
 if we draw k samples from n differ-

ent elements with replacement (Pishro-Nik 2016). Here we have k = n in our Bagging 

algorithm. Thus, the number of distinct resampling sets T̃  goes to 
(
2n − 1

n

)
 with prob-

ability 1 as T → ∞.
Since there are qt − 1 free observations in each resampling set and qt − 1 ≥ 1 holds 

except for the n sets in which the elements are all the same, we have 
∑T̃

t=1
(qt − 1) ≥ T̃ − n . 

Thus, 
∑T̃

t=1
(qt − 1) ≥

�
2n − 1

n

�
− n as T → ∞ . Even if n is small, 

(
2n − 1

n

)
 can be 

quite large. For example, when n = 30 , 
(
2n − 1

n

)
≈ 5.9 × 1016 . Thus, even in the cases 

where p ≫ n , we still have Pr(rank(�) = p) = 1 as long as 
(
2n − 1

n

)
− n > p.

In practice, it does not need too many resampling times T to ensure the full rank. Let 

� =

(
2n − 1

n

)
 and consider resampling p times i.e., T = p . Note that the number of res-

ampling sets with rank at least 1 is � − n . The probability of obtaining p distinct resam-
pling sets with rank at least 1 is

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
(1)

11
−�̂�

(1)

1

�̂�
(1)

1

X
(1)

12
−�̂�

(1)

2

�̂�
(1)

2

⋯
X
(1)

1p
−�̂�

(1)
p

�̂�
(1)
p

⋮ ⋮ ⋮

X
(1)

q1−1,1
−�̂�

(1)

1

�̂�
(1)

1

X
(1)

q1−1,2
−�̂�

(1)

2

�̂�
(1)

2

⋯
X
(1)

q1−1,p
−�̂�

(1)
p

�̂�
(1)
p

⋮ ⋮ ⋮

X
(T̃)

11
−�̂�

(T̃)

1

�̂�
(T̃)

1

X
(T̃)

12
−�̂�

(T̃)

2

�̂�
(T̃)

2

⋯
X
(T̃)

1p
−�̂�

(T̃)
p

�̂�
(T̃)
p

⋮ ⋮ ⋮

X
(T̃)

q
T̃
−1,1

−�̂�
(T̃)

1

�̂�
(T̃)

1

X
(T̃)

q
T̃
−1,2

−�̂�
(T̃)

2

�̂�
(T̃)

2

⋯
X
(T̃)

q
T̃
−1,p

−�̂�
(T̃)
p

�̂�
(T̃)
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠∑T̃

t=1
(qt−1)×p

.

Pr(rank(�) = min(

T̃∑
t=1

(qt − 1), p)) = 1.
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where o( n+p−1
�

) denotes a higher order term of n+p−1
�

 . Since 𝜏 ≫ n and 𝜏 ≫ p (e.g., for 
n = 30 , � ≈ 5.9 × 1016 ), then n+p−1

�
 is close to 0. Thus, the probability is quite close to 1. It 

illustrates that we could obtain a full rank matrix with only p resampling times with high 
probability. Since rank(�) = rank(�Bag) , we have Pr(rank(�) = p) = 1 and thus our �Bag is 
not singular.

It is worth mentioning that if we estimate the covariance matrix directly rather than 
the correlation matrix, i.e., without the standardization step, the Bagging estimator is 
not positive-definite. Similarly to the decomposition in Equation (1), we have

The corresponding random matrix �̃ is

where � is a Tn × n constant matrix. This means �̃ is only a linear transformation of � . We 
have

Thus, the Bagging sample covariance matrix is still singular.

3.2  Mean squared error

In addition to the guarantee of positive-definiteness, our Bagging estimator �Bag per-
forms well in terms of mean squared error (MSE). The MSE of a matrix estimator is 
defined by the Frobenius norm, i.e.,

where || ⋅ ||F is the Frobenius norm of a matrix, �̂� = (�̂�ij)p×p and � = (�ij)p×p are the esti-
mated and true correlation matrix respectively.

For the sample correlation matrix � = (rij)p×p , the MSE of � is

� − n

�
⋅
� − n − 1

�
⋯

� − n − p + 1

�
=

p−1∏
i=0

(1 −
n + i

�
)

≥ (1 −
n + p − 1

�
)p−1 = 1 −

(n + p − 1)(p − 1)

�
+ o(

n + p − 1

�
),

�
Bag =

1

T

T∑
t=1

�
(t) =

1

(n − 1)T

T∑
t=1

(�(t) − �̄
(t))

�
(�(t) − �̄

(t)).

�̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
(1)

11
− �̂�

(1)

1
X
(1)

12
− �̂�

(1)

2
⋯ X

(1)

1p
− �̂�(1)

p

⋮ ⋮ ⋮

X
(1)

n1
− �̂�

(1)

1
X
(1)

n2
− �̂�

(1)

2
⋯ X(1)

np
− �̂�(1)

p

⋮ ⋮ ⋮

X
(T)

11
− �̂�

(T)

1
X
(T)

12
− �̂�

(T)

2
⋯ X

(T)

1p
− �̂�(T)

p

⋮ ⋮ ⋮

X
(T)

n1
− �̂�

(T)

1
X
(T)

n2
− �̂�

(T)

2
⋯ X(T)

np
− �̂�(T)

p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Tn×p

= ��,

Rank(�̃) ≤ Rank(�) = n.

MSE(�̂�) = ||�̂� −𝜦||2
F
=
∑
i,j

(�̂�ij − 𝜆ij)
2,
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Although the performance of the sample correlation matrix is poor as a whole when p > n 
due to being singular, each entry of it is still an efficient estimator of pairwise covariance 
among variables. We next show that our Bagging estimator is consistent when p is fixed.

Theorem 3 The mean squared error of rBag
ij

 is no more than the average of mean-squared 
error of r(t)

ij
 , i.e.,

where r(t)
ij

 denotes the i-th row and j-th column entry of �(�).

Since each resampling set L(t) has the identical distribution, Theorem  3 leads to 
MSE(r

Bag

ij
) ≤ MSE(r

(t)

ij
) directly. Thus, it is sufficient to show that r(t)

ij
 is a consistent estima-

tor, which further leads to MSE(r
(t)

ij
) → 0 as n goes into infinity.

For a general bivariate distribution (X, Y) with finite forth moments, Lehmann (1999) 
showed that the limit distribution of 

√
n(rXY − �) is asymptotically normal with mean 0 and 

constant variance, where rXY is the sample correlation coefficient and � is the true value of 
correlation coefficient. It also implies that rXY is a consistent estimator of � . Here we pro-
posed its bootstrap version to show that r(t)

XY
 is asymptotically consistent.

Theorem  4 Let (X1, Y1),⋯ , (Xn, Yn) be i.i.d. according to some bivariate distribu-
tion (X,  Y), which has finite forth moments, with means E(X) = � , E(Y) = � , variances 
Var(X) = �2 , Var(Y) = �2 , and correlation coefficient � . Let (X(t)

1
, Y

(t)

1
),⋯ , (X(t)

n
, Y (t)

n
) be the 

t-th bootstrap resampling set. The bootstrap sample correlation is defined as

where

Then, as n goes to infinity, the bootstrap sample correlation r(t)
XY

 is a consistent estimator of 
�.

By Theorems 3 & 4, we have the following corollary.

Corollary 3 Under the mild condition that the p-dimensional distribution has finite forth 
moments, MSE of the Bagging estimator converges to zero, i.e.,

MSE(�) = E||� −�||2
F
= E

∑
i,j

(rij − �ij)
2 =

∑
i,j

MSE(rij).

MSE(r
Bag

ij
) ≤

1

T

T∑
t=1

MSE(r
(t)

ij
),

r
(t)

XY
=

1

n−1

∑n

i=1
(X

(t)

i
− X̄(t))(Y

(t)

i
− Ȳ (t))

S
(t)

X
S
(t)

Y

,

X̄(t) =
1

n

n∑
i=1

X
(t)

i
, Ȳ (t) =

1

n

n∑
i=1

Y
(t)

i
,

(S
(t)

X
)2 =

1

n − 1

n∑
i=1

(X
(t)

i
− X̄(t))2, (S

(t)

Y
)2 =

1

n − 1

n∑
i=1

(Y
(t)

i
− Ȳ (t))2.

MSE(�Bag) ≤ MSE(�(t)) → 0,
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as n → ∞ for fixed p. It implies that the Bagging estimator �Bag is consistent.

4  Simulations

In this section, simulation studies are presented to compare the performance of the Bag-
ging estimator with other classic approaches, including graphical lasso (glasso, Fried-
man et al., 2008), the hard-threshold method (H-threshold, Bickel and Levina, 2008), the 
shrinkage estimator (Ledoit and Wolf, 2004 and the traditional sample correlation matrix. 
Two criteria are used to evaluate the performance of estimators: comparable log-likelihood 
� and root-mean-square error (RMSE). Log-likelihood measures the fitness of observed 
data, which depends on the assumed distribution. Here comparable log-likelihood � is the 
core of the log-likelihood function with common constant terms omitted. RMSE measures 
the difference between the true values and estimators. The RMSE of an estimator is defined 
as follows:

where || ⋅ ||F is the Frobenius norm of a matrix, �̂� = (�̂�ij)p×p and � = (�ij)p×p are the esti-
mated and true correlation matrix respectively.

In the following simulation studies, we synthesize data from assumed distributions with 
known correlation matrix. The true correlation matrix is generated as follows:

where A = (aij)p×p , aij ∼ Unif(−1, 1) are i.i.d for i, j = 1,⋯ , p . The randomly generated 
correlation matrices are positive-definite and symmetric. They are general correlation 
matrices without any special structures.

Then, we obtain the estimated covariance matrix using generated data sets. Considering 
the uncertainty of Monte Carlo simulations, we repeat the experiments, including genera-
tion of random covariance matrices and data synthesis, 100 times independently in each 
setting. The means and standard errors of � and RMSE are reported for comparison. See 
the supplementary materials for the detailed R codes.

4.1  Case 1: multivariate Gaussian data

In this case, the data sets are generated from a multivariate Gaussian distribution with 
mean zero and a general correlation matrix. Here the true correlation matrix is generated 
randomly according to Equation (2). Table 1 presents the means and standard errors of �N 
and RMSE in the case of p = 50, n = 20 and p = 200, n = 100 respectively.

The only required parameter in the Bagging estimator is the resampling times T. In prac-
tice, increasing the resampling times may improve the accuracy of estimation. Figure 2, 
which is from one of following simulation studies, demonstrates the relationship between 
T and RMSE. At the beginning, the RMSE of the estimator decays with the increase of T 
and then converges to a stable level. In the following simulation studies, T is set as 100 to 
balance accuracy of estimation and computation cost.

RMSE(�̂�) =
1

p
||�̂� −𝜦||F =

1

p

√∑
i,j

(�̂�ij − 𝜆ij)
2,

(2)� = A�A and � = diag(�)−1∕2�diag(�)−1∕2
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From Table 1, we find that the hard-threshold method sacrifices much information 
of the covariance matrix to attain positive-definiteness. The comparable log-likelihood 
of the thresholded estimator is quite low, though its RMSE performs well. Our Bag-
ging estimator has significant advantages over compared approaches on comparable 
log-likelihood �N . This demonstrates that the Bagging estimator fits the observed data 
better. Note that �N of the sample correlation estimator would be infinite when p > n 
due to the estimator being singular, making the estimator invalid. For RMSE, the per-
formance of Bagging and glasso are close, and better than the shrinkage estimator and 
the sample correlation estimator; but not as good as the H-threshold estimator.

The results of more scenarios under different settings are shown in Fig. 3. Here the 
sample size n is set as n = p∕2 varying with the number of variables p. In summary, 
the Bagging estimator strikes a better balance between RMSE and likelihood.

4.2  Case 2: multivariate t‑distribution data

Besides traditional multivariate Gaussian data, the Bagging estimator also works on 
general continuous distributions, such as multivariate t-distributions. In the following 

Fig. 2  The RMSE of Bagging estimator decays with the increase of T at the beginning and then seemingly 
converges to a stable level

Table 1  The means and standard errors of two criteria across 100 independent experiments for multivariate 
Gaussian data

p = 50 , n = 20 p = 200 , n = 100

�N RMSE �N RMSE

Bagging 94.46(2.31) 0.2192(0.0075) 435.19(2.66) 0.0998(0.0009)
H-threshold −44.74(1.19) 0.1422(0.0028) −189.64(1.40) 0.0718(0.0004)
Shrinkage 46.61(3.18) 0.2264(0.0152) 180.71(1.48) 0.0965(0.0016)
glasso 71.61(0.96) 0.2186(0.0078) 126.21(1.28) 0.0964(0.0010)
Sample – 0.2384(0.0163) – 0.1016(0.0018)
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simulation studies, data are generated from the multivariate t-distribution with mean 
zero and a general correlation matrix, which is still randomly generated from Equa-
tion  (2). The multivariate t-distribution is a generalization to random vectors of Stu-
dent’s t-distribution (Genz and Bretz, 2009). The density function is defined as

where � and � are the mean vector parameter and correlation matrix parameter respec-
tively. Here � denotes the degrees of freedom of the distribution. As � → ∞ , the multivari-
ate t-distribution converges to the multivariate Gaussian distribution asymptotically. So the 
degrees of freedom � is set to 3 to distinguish from the Gaussian cases. The resampling 
times T is still set as 100, the same as in Sect. 4.1. Table 2 presents the means and standard 
errors of �t and RMSE in the case of p = 50, n = 20 and p = 100, n = 50.

More scenarios under different settings are explored in Fig. 4. Also, the sample size 
n is set as n = p∕2.

Table 2 and Fig. 4 draw similar conclusions to those in Table 1 and Fig. 3. They dem-
onstrate that our Bagging estimator is not only suitable for Gaussian data, but also can be 
applied to non-Gaussian data.

f (�;�,�, �) =
� [(� + p)∕2]

� (�∕2)�p∕2�p∕2|�|1∕2
[
1 +

1

�
(� − �)T�(� − �)

]−(�+p)∕2
.

Fig. 3  a For comparable log-likelihood �
N

 , our Bagging estimator beats others significantly across all val-
ues of p. b For RMSE, the Bagging estimator is second only to the hard-threshold method, which has the 
worst performance from the perspective of �

N

Table 2  The means and standard errors of two criteria across 100 independent experiments for Multivariate 
t-distribution data ( � = 3)

p = 50 , n = 20 p = 100 , n = 50

�t RMSE �t RMSE

Bagging −48.15(4.13) 0.2921(0.0496) −169.11(5.47) 0.2171(0.0398)
H-threshold −185.61(8.15) 0.1432(0.0034) −424.73(15.78) 0.1005(0.0012)
Shrinkage −108.91(9.37) 1.2597(1.7466) −261.19(10.43) 0.7906(0.5331)
glasso −61.47(4.92) 0.3218(0.0751) −247.09(10.72) 0.2378(0.0583)
Sample – 1.3275(1.8385) – 0.8333(0.5611)



Machine Learning 

1 3

5  Application

This section presents a real application to demonstrate the performance of our estimator. 
The original dataset, contributed by Bhattacharjee et al. (2001), is a famous gene expres-
sion dataset on lung cancer patients. It contains 203 specimens, including 139 adenocar-
cinomas resected from the lung (“AD” samples) and 64 other samples, and 12,600 tran-
script sequences. Here we focus on the 139 “AD” samples ( n = 139 ) and assume they are 
independent, identically distributed, and follow a Gaussian distribution. For simplicity, we 
use a standard deviation threshold of 500 expression units to select the 186 most variable 
transcript sequences ( p = 186 ). Then, a subset of 70 “AD” samples are sampled randomly 
without replacement to form a covariance matrix estimator. We repeat the experiments 
and the sampling procedure for 100 times independently. The comparable log-likelihood 
and RMSE for different covariance matrix estimations are summarized in Table 3, where 
RMSE is calculated using the sample covariance matrix of the full 139 samples instead 
of the unknown “true” covariance matrix. It shows our Bagging estimator has significant 
advantages over other estimators in terms of likelihood, and is competitive in terms of 
RMSE.

Figure 5 presents the sample correlation matrix of the full 139 samples and the Bagging 
estimator with a subset of 70 samples in one of experiments. It demonstrates that our Bag-
ging estimator is quite close to the “true” value.

Fig. 4  a For comparable log-likelihood �
t
 , our Bagging estimator beats others significantly across all values 

of p. b For RMSE, the Bagging estimator is second only to the hard-threshold method, which has the worst 
performance from the perspective of �

t

Table 3  Means and standard 
errors of two criteria across 100 
independent experiments

�N RMSE

Bagging 518.27(7.50) 0.0875(0.0056)
H-threshold −133.16(33.14) 0.1930(0.0018)
Shrinkage 274.45(1.87) 0.0841(0.0055)
glasso 262.45(3.04) 0.0864(0.0056)
Sample – 0.0879(0.0056)



 Machine Learning

1 3

6  Summary

In this paper, we propose a novel approach to estimate high-dimensional correlation matri-
ces when p > n with finite samples. Through the procedure of Bootstrap resampling, we 
show that the Bagging estimator ensures positive-definiteness with probability one in finite 
samples. Furthermore, our estimator is flexible for general continuous data under some 
mild conditions. The common assumptions in analogous problems, such as sparse structure 
and having a Gaussian distribution, are unnecessary in our framework. Through simula-
tion studies and a real application, our method is demonstrated to strike a better balance 
between RMSE and likelihood. The selected four approaches for comparison represent dif-
ferent but classical ideas to solve the high-dimensional covariance matrix problem; so the 
results are representative.

It should be noted that our Bagging estimator is devoted to solving problems with little 
prior knowledge. If one has the prior information on the structure of the covariance matrix, 
e.g., block or banding, specific approaches are certainly better than our general method. 
The choice of estimation method still depends on specific scenarios and applications. Some 
theoretical aspects can be explored further in future research, e.g., the convergence rate of 
the Bagging estimator when both p and n go to infinity.

Appendix A: proofs of Lemmas & Theorems

Proof of Lemma 1 Without loss of generality, assume a1 ≠ 0 . So

This implies that

Pr(U1 = −

n∑
i=2

ai

a1
Ui) = 0.

Pr(U1 =

n∑
i=2

biUi|U2,⋯ ,Un) = 0,

Fig. 5  a Heat map of the sample correlation matrix of the full 139 samples, which is viewed as “true” cor-
relation matrix for comparison. b Heat map of the Bagging estimator on a subset of 70 samples
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where bi = −ai∕a1 . Here bi can be any value in ℝ since the equation holds for any ai ∈ ℝ . 
Since U1 is a continuous random variable, by Definition 4, U1 is linearly irreducible given 
remaining random variables.

Similarly, we have every Ui is linearly irreducible given remaining random variables. 
Thus, U1,⋯ ,Un are linearly irreducible.   ◻

Proof of Theorem  1 If q ≤ p , we need to show that Pr(rank(�) = q) = 1 . Construct 
a square submatrix �q×q using the first q columns of � . Since � is a square matrix, 
Pr(rank(�) = q) = 1 means that � is singular with probability 0, i.e., Pr(det(�) = 0) = 0 . 
� is singular if and only if Gi lies in the span of G1,⋯ ,Gi−1 for some i, where Gi may be 
a row or column vector of � . Since this theorem is symmetric by rows or columns, we 
assume Gi are row vectors of � without loss of generality. Thus,

where Vi ∶= span(G1,⋯ ,Gi−1) . Here we define V1 the null space. Obviously, we have 
Pr(G1 ∈ V1) = 0 . Then we show Pr(Gi ∈ Vi) = 0 for any 1 < i ≤ q.

According to condition (2), G1j,⋯ ,Gqj are linearly irreducible for all j. So, for any 
1 < i ≤ q , G1j,⋯ ,Gij are linearly irreducible for all j. This means Gij is linearly irreducible 
given G1j,⋯ ,Gi−1,j for all j. By Definition 4, we have

holds for all j and for any a1,⋯ , ai−1 . Thus, Pr(Gi ∈ Vi|G1,⋯ ,Gi−1) = 0 holds for any 
1 < i ≤ q.

By integrating G1,⋯ ,Gi−1 out, we get

for any i. Thus,

as desired. So, we have Pr(rank(�) = q) = 1 . And since rank(�) ≤ rank(�) ≤ q , then 
Pr(rank(�) = q) = 1.

If q > p , we take the first p rows of � to construct a square submatrix �p×p . Similarly we 
have Pr(rank(�) = p) = 1 . And since rank(�) ≤ rank(�) ≤ p , then Pr(rank(�) = p) = 1.

Thus, generally, we have Pr(rank(�) = min(q, p)) = 1 .   ◻

Proof of Lemma 2 Note that

is a function of X(t)

1j
,⋯ ,X

(t)

qt ,j
 , where X(t)

1j
,⋯ ,X

(t)

qt ,j
 are independent continuous random 

variables.
Let X(t)

1j
= X . Given X(t)

2j
,⋯ ,X

(t)

qt ,j
 , for any b ∈ ℝ , we have

Pr(det(�) = 0) ≤

q∑
i=1

Pr(Gi ∈ Vi),

Pr(Gij =a1G1j +⋯ + ai−1Gi−1,j|G1j,⋯ ,Gi−1,j) = 0

Pr(Gi ∈ Vi) = 0

Pr(det(�) = 0) ≤

q∑
i=1

Pr(Gi ∈ Vi) = 0

G
(t)

ij
=

X
(t)

ij
− �̂�

(t)

j

�̂�
(t)

j

,
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where CX2 + DX + E > 0 for all X, A ≠ 0 , and A, B, C, D, E are constants. Consider that

there are at most two zero points in solution space � . Since X = X
(t)

1j
 is independent of 

X
(t)

2j
,⋯ ,X

(t)

qt ,j
 , and X is a continuous random variable, by Corollary 1, X|X(t)

2j
,⋯ ,X

(t)

qt ,j
 is a 

continuous random variable. For any finite set � , Pr(X ∈ �) = 0 . So, we have

By integrating X(t)

2j
,⋯ ,X

(t)

qt ,j
 out, we have Pr(G(t)

ij
= b) = 0 for any b ∈ ℝ . Then for any finite 

or countable set B of points of the real line, we have Pr(G(t)

ij
∈ B) = 0 .   ◻

Proof of Theorem 2 According to Theorem 1 and Lemma 1, we only need to check that � 
satisfies the two conditions: (1) By rows, G(t)

i1
,⋯ ,G

(t)

ip
 are linearly irreducible for all i, t; (2) 

By columns, G(1)

1j
,⋯ ,G

(1)

q1−1,j
,⋯ ,G

(T̃)

1j
,⋯ ,G

(T̃)

qT̃−1,j
 are linearly irreducible for all j. 

(1): Note that if X(t)

i
= (X

(t)

i1
,⋯ ,X

(t)

ip
) follows a continuous and irreducible p-dimensional 

distribution, then {X(t)

i1
,⋯ ,X

(t)

ip
} are irreducible. Since X(t)

i
 , i = 1,⋯ , qt , are independent 

random vectors, according to Corollary 1, we have 

 are irreducible. For any a1,⋯ , ap ∈ ℝ , not all zero, we explore the probability of the 
equation 

 Without loss of generality, assume a1 ≠ 0 . Let X(t)

11
= X . Given X(t)�X

(t)

11
 , we have 

 where CX2 + DX + E > 0 for all X, A ≠ 0 and A, B, C, D, E, F are constants. Since X 
is irreducible given X(t)�X

(t)

11
 , similarly with the proof of Lemma 2, we have 

Pr(G
(t)

ij
= b�X(t)

2j
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(t)
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 By integrating X(t)�X
(t)

11
 out, we have Pr(a1G

(t)

i1
+⋯ + apG

(t)

ip
= 0) = 0 . Accord-

ing to Lemma 2, G(t)

ij
 are continuous random variable. Then, by Lemma 1, we have 

G
(t)

i1
,⋯ ,G

(t)

ip
 are linearly irreducible for all i, t. The random matrix � satisfies condi-

tion (1).
(2) Within the t-th resampling set, there are qt different independent samples X(t)
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qt
 . 

For any t and column j, G(t)
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where A1,B1 are not both zero and A2,B2 are not both zero, since G(t1)

1j
,⋯ ,G

(t1)

qt1
−1,j

 are line-
arly irreducible and G(t2)

1j
,⋯ ,G

(t2)

qt2
−1,j

 are linearly irreducible. Here C1X
2 + D1X + E1 > 0 

and C2X
2 + D2X + E2 > 0 for all X, and A1,B1,C1,D1,E1,A2,B2,C2,D2,E2 are constants. 
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2j
,⋯ ,X

(t)

qt ,j
 is a 

continuous random variable. For any finite set � , the probability Pr(X ∈ �) = 0 . So, we 
have

By integrating X(t1)

⋅j
∪ X

(t2)

⋅j
�X

(t1)

ij
 out, we have

According to Lemma  2, G(t)

ij
 is a continuous random variable. Then, by Lemma  1, 

G
(t1)

1j
,⋯ ,G

(t1)

qt1
−1,j

,G
(t2)

1j
,⋯ ,G

(t2)

qt2−1
,j
 are linearly irreducible for all j. Similarly, we can general-

ize the results that G(1)

1j
,⋯ ,G

(1)

q1−1,j
,⋯ ,G

(T̃)

1j
,⋯ ,G

(T̃)

qT̃−1,j
 are linearly irreducible for all j. The 

random matrix � satisfies condition (2).
By Theorem 1, Pr(rank(�) = min(

∑T̃

t=1
(qt − 1), p)) = 1 as required.   ◻

Proof of Theorem 3 Note that

Applying the Jensen’s inequality to the first term,

Pr(

qt1
−1�

i=1

a
(t1)

i
G

(t1)

ij
+

qt2
−1�

i=1

a
(t2)

i
G

(t2)

ij
= 0�X(t1)

⋅j
∪ X

(t2)

⋅j
�X)

=Pr(
A1X + B1√

C1X
2 + D1X + E1

+
A2X + B2√

C2X
2 + D2X + E2

= 0�X(t1)

⋅j
∪ X

(t2)

⋅j
�X)

A1X + B1√
C1X

2 + D1X + E1

+
A2X + B2√

C2X
2 + D2X + E2

= 0

⇒(A1X + B1)
2(C2X

2 + D2X + E2) = (A2X + B2)(C1X
2 + D1X + E1),

Pr

⎛⎜⎜⎝

qt1
−1�

i=1

a
(t1)

i
G

(t1)

ij
+

qt2
−1�

i=1

a
(t2)

i
G

(t2)

ij
= 0

����X
(t1)
⋅j

∪ X
(t2)

⋅j
�X

⎞⎟⎟⎠
= 0.

Pr

⎛⎜⎜⎝

qt1
−1�

i=1

a
(t1)

i
G

(t1)

ij
+

qt2
−1�

i=1

a
(t2)

i
G

(t2)

ij
= 0

⎞
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= 0.

1

T

T∑
t=1

(
r
(t)

ij
− �ij

)2

=
1

T

T∑
t=1

(
r
(t)

ij

)2

−
2�ij

T

T∑
t=1

r
(t)

ij
+ �2

ij
.
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Integrating both sides of the inequality over the distribution of � , by definition, we have

  ◻

Theorem 4 Note that

To characterize the property of bootstrap sample mean and variance, we introduce 
Z(t) = (z1,⋯ , zn) ∼ Multinomial(n;

1

n
,⋯ ,

1

n
) to denote the number of occurrences for 

{(X1, Y1),⋯ , (Xn, Yn)} in the t-th resampling set, where 
∑n

i=1
zi = n . For each zi , we have 

E(zi) = n ⋅
1

n
= 1 and Var(zi) = n ⋅

1

n
(1 −

1

n
) = 1 −

1

n
.

Then, the bootstrap sample mean X̄(t) can be written as

Since Z(t) is independent with {(X1, Y1),⋯ , (Xn, Yn)} , then we have the expectation

The variance can be calculated by the law of total variance as follows:

1

T

T∑
t=1

(
r
(t)

ij
− �ij

)2

≥

(
1

T

T∑
t=1

r
(t)

ij

)2

−
2�ij

T

T∑
t=1

r
(t)

ij
+ �2

ij
=

(
1

T

T∑
t=1

r
(t)

ij
− �ij

)2

=
(
r
Bag

ij
− �ij

)2

.

MSE(r
Bag

ij
) ≤

1

T

T∑
t=1

MSE(r
(t)

ij
).

(3)

r
(t)

XY
=

1

n−1

∑n

i=1
(X

(t)

i
− X̄(t))(Y

(t)

i
− Ȳ (t))

S
(t)

X
S
(t)

Y

=

1

n

∑n

i=1
(X

(t)

i
− X̄(t))(Y

(t)

i
− Ȳ (t))

�
1

n

∑n

i=1
(X

(t)

i
− X̄(t))2 ⋅

1

n

∑n

i=1
(Y

(t)

i
− Ȳ (t))2

=

1

n

∑n

i=1
(X

(t)

i
− 𝜉)(Y

(t)

i
− 𝜂)

�
1

n

∑n

i=1
(X

(t)

i
− X̄(t))2 ⋅

1

n
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i=1
(Y

(t)

i
− Ȳ (t))2

−
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1

n
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i=1
(X

(t)

i
− X̄(t))2 ⋅

1
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i=1
(Y

(t)

i
− Ȳ (t))2

.

X̄(t) =
1

n

n∑
i=1

X
(t)

i
=

1

n

n∑
i=1

ziXi.

E[X̄(t)] = E[
1

n

n∑
i=1

ziXi] =
1

n

n∑
i=1

E[zi] ⋅ E[Xi] =
1

n

n∑
i=1

𝜉 = 𝜉.
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since 
∑n

i=1
zi = n and E[z2

i
] = Var(zi) + [E(zi)]

2 = 2 −
1

n
 . Thus, the bootstrap sample mean 

X̄(t) is a consistent estimator of � . Similarly, Ȳ (t) is a consistent estimator of �.

Since X̄(t)
→ 𝜉 in probability, 1

n

∑n

i=1
(X

(t)

i
− X̄(t))2 can be written as

Then we have the expectation

Since the forth moment is finite, the variance can be calculated by the law of total variance 
as follows:

Thus, 1
n

∑n

i=1
(X

(t)

i
− X̄(t))2 is a consistent estimator of �2 . Similarly, 1

n

∑n

i=1
(Y

(t)

i
− Ȳ (t))2 is a 

consistent estimator of �2.

Back to Equation  3, since X̄(t) and Ȳ (t) are consistent estimators of � and � , and the 
denominators are consistent estimators of �2 and �2 , then we have the second term in 
Equation 3 tends to 0 in probability as n → ∞ , i.e.,

Var[X̄(t)] = Var[
1

n

n∑
i=1

ziXi]

= Var[E[
1

n

n∑
i=1

ziXi|z1,⋯ , zn]] + E[Var[
1

n

n∑
i=1
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𝜉

n

n∑
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𝜎2

n2
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z2
i
]
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𝜎2

n
(2 −

1

n
) =

𝜎2

n
(2 −

1

n
) → 0 as n → ∞,

1

n
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(X
(t)

i
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1

n

n∑
i=1

(X
(t)

i
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1

n

n∑
i=1
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2
i
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1

n

n∑
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2
i
− 𝜉2.
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1

n
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i=1
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i
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1
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2
i
] − 𝜉2 =

1

n
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2
i
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1
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1

n
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(X
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i
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1
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n∑
i=1
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2
i
]
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1

n

n∑
i=1
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2
i
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1

n

n∑
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n
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1
)
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1
)

n
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1
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1
)

n
(2 −
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n
) → 0 as n → ∞.
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For the first term in Equation 3, the denominators are consistent with �2 and �2 . So, we 
focus on the numerator 1

n

∑n

i=1
(X

(t)

i
− �)(Y

(t)

i
− �) . By introducing Z, we have

Then we have the expectation

The variance can be calculated by the law of total variance as follows:

Thus, we have the numerator 1
n

∑n

i=1
(X

(t)

i
− �)(Y

(t)

i
− �) converges to ��� in probability. To 

sum up, the bootstrap correlation coefficient r(t)
XY

 is a consistent estimator of � .   ◻

Corollary 3 By Theorem 4, the bootstrap correlation coefficient r(t)
ij

 is a consistent estima-
tor. Suppose that there exists some 𝜖 > 0 satisfying lim infn E(r

n,(t)

ij
− 𝜆ij)

2 ≥ 𝜖 > 0 , where 
r
n,(t)

ij
 denotes r(t)

ij
 with n samples. It follows that there exists N such that for n > N we have 

E(r
n,(t)

ij
− �ij)

2 ≥ �∕2.

By Paley-Zygmund’s inequality, we have

where we used E(rn,(t)
ij

− �ij)
4 ≤ 16 since both rn,(t)

ij
 and �ij are bounded in [1,−1] . This is a 

contradiction with the fact that rn,(t)
ij

 is a consistent for �ij . Thus, we have

(4)
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1

n
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i=1
(X

(t)

i
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1
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→ 0.
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as n → ∞ . According to Theorem 3, we have

as n → ∞ . By the definitions that MSE(�Bag) =
∑

i,j MSE(r
Bag

ij
) and 

MSE(�(t)) =
∑

i,j MSE(r
(t)

ij
) , we have

as n → ∞ for fixed p. It implies that the Bagging estimator �Bag is consistent.   ◻
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