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ABSTRACT
Predicting mortality rates is a crucial issue in life insurance pricing and
demographic statistics. Traditional approaches, such as the Lee-Carter
model and its variants, predict the trends of mortality rates using factor
models, which explain the variations of mortality rates from the perspec-
tive of ages, gender, regions, and other factors. Recently, deep learning
techniques have achieved great success in various tasks and shown strong
potential for time-series forecasting. In this paper, we propose a modified
Transformer architecture for predicting mortality rates in major countries
around the world. Through the multi-head attention mechanism and posi-
tional encoding, the proposed Transformer model extracts key features
effectively and thus achieves better performance in time-series forecasting.
By using empirical data from the Human Mortality Database, we demon-
strate that our Transformermodel has higher prediction accuracy ofmortal-
ity rates than the Lee-Carter model and other classic neural networks. Our
model provides a powerful forecasting tool for insurance companies and
policy makers.
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1. Introduction

With the improvement of living environment and medical care, the overall human mortality shows
a significant downward trend after the Second World War (Klenk et al. 2016). The increase in life
expectancy raises a number of social issues, such as the aging population. It also poses challenges for
insurance companies to determine life insurance premiums since the pricing of life insurance must
take dynamic changes in mortality into account (Pitacco et al. 2009). Thus, predicting mortality rates
is a crucial issue in life insurance pricing and demographic statistics.

In 1992, Lee & Carter (1992) proposed a one-factor model to forecast the time series of mor-
tality in the United States. The Lee-Carter (LC) model explained the variation of mortality rates in
terms of age effects and the force of mortality. This seminal work provided a good fit to the empir-
ical data by extrapolating historical rates of mortality, and then established itself as the benchmark
of mortality forecasting for a long period. Cairns et al. (2009) commented that the LC model effec-
tively combined statistical time seriesmethodswith demographicmodeling. After that,many variants
of the LC model were proposed to improve the prediction accuracy further. Brouhns et al. (2002)
adopted a Poisson distribution to approximate death counts instead of the Gaussian assumption.
In the Poisson-LC framework, parameter estimation is derived by maximum likelihood estimation
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(MLE) with the Newton-Raphson updating algorithm. Booth et al. (2002) found that the mortal-
ity index kt in the LC model did not hold linearity over the whole fitting period. They proposed a
modification called the Booth-Maindonald-Smith (BMS) model to choose the optimal fitting period
automatically. Cairns et al. (2006) proposed a two-factor stochastic mortality model, denoted the
Cairns-Blake-Dowd (CBD) model. They extended the LC model by introducing a factor to charac-
terize the difference in mortality at higher and lower ages. Li & Wong (2020) proposed a modified
LC method to allow for structural changes in mortality, in which the entire data period was divided
intomore homogeneous subperiods and a unique set of age-specific parameters was incorporated for
each subperiod.

The LC model and its extensions established a simple framework to forecast and interpret mor-
tality rates. However, the structures of factor models limit prediction accuracy. In recent years,
deep learning techniques have achieved great breakthroughs in various tasks, e.g. image recognition
(Krizhevsky et al. 2017), machine translation (Devlin et al. 2018), and protein structure prediction
(Jumper et al. 2021). Due to their superior ability to capture the non-linear characteristics of data
sets, deep neural networks also show strong potential for applications in time-series forecasting (Lim
& Zohren 2021). Thus, it is an intuitive idea to consider predicting mortality rates with deep neural
networks. Nigri et al. (2019) applied the long short-term memory (LSTM) within the usual two-
step procedure to fit the LC model, instead of the traditional statistical time-series ARIMA model.
They found that the resulting forecasts were more accurate and flexible than the classical approach.
Richman & Wüthrich (2021) proposed a multi-population extension of the LC model using fully
connected neural networks (FCNs) and embedding layers, which are a specializedmethod of incorpo-
rating categorical data into neural networks. Inspired by this method, Lindholm & Palmborg (2022)
extended the Poisson Lee-Carter model using a LSTM neural network, with a particular focus on dif-
ferent procedures for how to use training data efficiently, combined with ensembling to stabilize the
predictive performance. In order to characterize the spatial structure of the data, Scognamiglio (2022)
proposed the Locally-Connected Networks (LCNs) for more robust fitting of Lee-Carter and Poisson
Lee-Carter models associated with multiple populations.

Recently, more and more studies have gotten rid of the LC framework and fitted mortality rates
with neural networks directly. Perla et al. (2021) incorporated recurrent neural networks (RNNs)
and convolutional neural networks (CNNs) into a network model to predict mortality rates. Fur-
thermore, Perla & Scognamiglio (2023) employed the multi-layer perceptron (MLP) for large-scale
mortality modeling and forecasting with the assumption of locally-coherence among multiple popu-
lations. Besides,Wang et al. (2021) introduced a novel neighbouring predictionmodel using 2DCNN,
which can capture the intricate nonlinear structure in the mortality data. Schnürch & Korn (2022)
considered the prediction uncertainty of CNNs onmortality rates and implemented a bootstrapping-
based technique to yield an interval estiamte. Although CNNs and RNNs have been shown in recent
studies to be capable of predictingmortality rates, these traditional architectures still have some draw-
backs. For example, the pooling layers in CNNs cause the loss of valuable information by ignoring the
part-whole relationships (Xi et al. 2017); RNNs have been prone to result in vanishing and exploding
gradients in the back-propagation process (Huang et al. 2019). In 2017, Vaswani et al. (2017) proposed
an innovative deep learning architecture called Transformer, which uses the attention mechanism
instead of traditional CNN and RNN architectures, to address natural language processing (NLP)
problems. This seminal work provided a brand-new perspective on how to construct neural net-
works with attentionmechanisms. Inspired by the success in NLP tasks, Transformer has been widely
applied in various fields recently (Parmar et al. 2018, Tetko et al. 2020), including time series forecast-
ing (Wen et al. 2022). Zhou et al. (2021) proposed an improved Transformer model called Informer
for long-sequence time series forecasting.Wang et al. (2022) applied Transformer to predict the stock
market index. They demonstrated that Transformer outperformed other classicmethods significantly
and could gain excess earnings for investors.

In this paper, we consider predicting mortality rates using the Transformer architecture. As far as
we know, it is the first time that Transformer is evaluated in the task of mortality rates forecasting.
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Through the multi-head attention mechanism and positional encoding, the proposed Transformer
model extracts key features effectively and thus achieves better performance in time-series fore-
casting. Compared with the sequential structure of RNN and LSTM, the attention mechanism in
Transformer can be trained in parallel, and it is easier to obtain global information. This paper
explores the mortality rates of eight major countries on the Human Mortality Database (HMD).
Empirically, we demonstrate that our Transformer model has higher prediction accuracy of mor-
tality rates than the LC model and other classic neural networks. Our model provides a powerful
forecasting tool for insurance companies and policy makers.

This paper is organized as follows: Section 2 introduces the background knowledge of the LC
model and traditional deep learning models used in the experiments. Section 3 details the architec-
ture of Transformer used for mortaliry rates prediction. Section 4 describes the process of empirical
experiments, including data processing, parameter settings, evaluation criteria, and error analysis.
Section 5 concludes this paper.

2. Background

2.1. Lee-cartermodel

In 1992, Lee & Carter (1992) proposed the classic LC model for mortality forecasting in the United
States. Much of the attention on mortality was first stimulated by this seminal work. The LC
model decomposed the log-mortality into an age-specific parameter and a time-varying component.
Specifically, the LC model can be expressed as follows:

ln(mx,t) = αx + βxκt + εx,t , (1)

wheremx,t is the mortality rate at age x in year t, αx is the average of age-specific mortality over time,
κt is a time index of the general level of mortality, and βx describes the relative mortality at each age.
The error term εx,t reflects residual age-specific temporal influences not captured by themodel, which
is assumed to have zero mean and variance σ 2

ε .
Given the observedmortalitymx,t , the LCmodel first computesαx by averaging log-mortality rates

at age x over time. After subtracting αx from each column of ln(mx,t) to produce a centred matrix,
it performs the singular value decomposition (SVD) to derive βx and κt . Specifically, βx is obtained
from the first left singular vector under the constrain

∑
x βx = 1, and κt is the product of the leading

singular value, the first right singular vector and the sum of the first left singular vector. Here κt is a
univariate time series vector that captures most of the mortality trend. Under the assumption that βx
is invariant over time, the LCmodel predicts futuremortality by extrapolating the trend of κt linearly.

In general, the LCmodel provided a simple yet powerful stochasticmethod to predict and interpret
the variants ofmortality rates.However, the structure of factormodels also limits the further improve-
ment of prediction accuracy. Thus, we consider deep learning techniques to predict mortality rates
in this paper.

2.2. CNN

CNN is one of themost important deep learning architectures. Through the combination of convolu-
tional layers and pooling layers, CNN achieves great success in image processing (Egmont-Petersen
et al. 2002) and thusmotivates the interest of researchers in deep learning. For time series forecasting,
CNN employs a one-dimensional convolution operator to extract features from sequential data (Tang
et al. 2022).

Assume that the mortality data is X = {xt , t = 1, . . . ,T}, where xt ∈ R
d. Here d is the dimension

of ages and xt denotes the mortality rates in year t at each age. The mortality data X as an input is fed
into the one-dimensional convolutional layer with K filters, where the kernel size ism and the stride
is s. Let wj ∈ R

d, j = 1, . . . ,m, and bk ∈ R, k = 1, . . . ,K, be weights and biases of the convolutional
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Figure 1. An example of one-dimensional convolution layer in CNN.

layer, respectively. The output of the convolutional layer is written as Z = {zk, k = 1, . . . ,K}, where
zk ∈ R

T+s−m and

zk,i = φ

⎛
⎝bk +

m∑
j=1

〈wj, xm+i−j〉
⎞
⎠ , 1 ≤ i ≤ T + s − m.

Here 〈·, ·〉 represents the inner product in R
d, and φ : R → R is an activation function. Figure 1

presents an example of the one-dimensional convolution layer. By using convolutional layers and
pooling layers, CNN extracts the key features of time series and then outputs the final prediction
through a fully connected layer.

2.3. RNN-LSTM

Compared with CNN, RNN is specifically designed for sequential data. Tomodel the interdependent
information in the context, RNN introduces an internal state called the memory cell to store past
information (Hüsken & Stagge 2003). RNN provides an effective architecture to model time series,
but still has some limitations. Long-term dependence in RNN, for example, may result in vanishing
and exploding gradients in the back-propagation process (Huang et al. 2019).

Hochreiter & Schmidhuber (1997) proposed a variant of RNN, called LSTM, to tackle the long-
term dependence problem. LSTM inherits thememory cell in RNN and adds a specific gate structure,
i.e. input gate it , forget gate ft , and output gate ot . Through the gate structure, key features are stored
in the memory cells and passed to the next neuron, while obsolete information can be forgotten to
save memory space. Figure 2 presents the details of the LSTM architecture.

Given the mortality data is X = {xt , t = 1, . . . ,T}, where xt ∈ R
d denotes the mortality rates in

year t at each age, the feedforward steps in LSTM can be expressed as follows:

f t = σ(Wf · [ht−1, xt] + bf ),

it = σ(Wi · [ht−1, xt] + bi),

ot = σ(Wo · [ht−1, xt] + bo),

ct = f t � ct−1 + it � tanh(Wc · [ht−1, xt] + bc),

ht = ot � tanh(ct),

where ht ∈ R
h denotes the hidden state with h hidden units, Wf ,Wi,Wo,Wc ∈ R

h×(h+d) and
bf , bi, bo, bc ∈ R

h are weight matrices and bias vectors for the corresponding connection, σ(·) and
tanh(·) represent the sigmoid function and the tanh function, [·, ·] denotes the concat operation
which merges the two vectors together, and � denotes the Hadamard product of two vectors.
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Figure 2. The structure of Long Short-TermMemory network.

Figure 3. The architecture of Transformer for mortality prediction.

3. Transformer

In 2017, Vaswani et al. (2017) proposed a seminal deep learning architecture called Transformer
for NLP problems. Transformer uses the self-attention mechanism instead of traditional CNN and
RNN architectures to extract key features from contexts. Just as they said, ‘attention is all you need.’
The success of Transformer in machine translation also piqued the interest of applications on time
series forecasting. For example, Zhou et al. (2021) proposed an improved Transformer model called
Informer for long-sequence time series forecasting. Wang et al. (2022) applied Transformer to pre-
dict the stock market index. In this paper, we consider using Transformer to predict mortality rates.
Figure 3 presents the architecture of Transformer briefly.
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Figure 4. The structure of self-attention.

3.1. Embeddings and positional encoding

At the beginning, themortality dataX are fed into the embedding layer and positional encoding layer
to extract spatial and temporal features. Embedding is a commonly used technique in NLP problems,
which maps the sparse and high-dimensional word vectors into a low-dimensional space (Mikolov
et al. 2013). Through a fully connected network, the embedding layer extracts spatial information on
the age structure from the input and outputs a matrix A ∈ R

T×dm , where dm is the dimension of the
model. Besides, the positional encoding layer characterizes the sequential information of time series
by using the sine and cosine functions of different frequencies:

PEt,2s = sin(t/10, 0002s/dm),

PEt,2s+1 = cos(t/10, 0002s/dm),

where 1 ≤ 2s ≤ dm. Then, the embedded input and positional encoding are summed together and
fed into the encoder module.

3.2. Encoder-decoder

Transformer takes the encoder–decoder architecture, which was first proposed in the variational
autoencoder (VAE) method (Kingma & Welling 2013). The encoder expresses the key information
into a fixed-length vector, and then the decoder converts it into an output. The encoder-decoder
architecture has been shown to be effective for modeling sequential data (Bahdanau et al. 2014).

Specifically, both the encoder and decoder modules are composed of a stack of N layers with
identical structures: the multi-head self-attention layers and a feed-forward network, which is fully
connected. The residual connection and normalization operators are added in each sub-layer to
improve the performance (He et al. 2016). Different from the original decoder inVaswani et al. (2017),
this paper omits the mask attention mechanism by referring to the idea in Wang et al. (2022).

3.3. Multi-head attention

The attentionmechanism is the core of Transformer andmay be themost exciting innovation in deep
learning in the past few years (Mnih et al. 2014). The attention mechanism is inspired by the mecha-
nism of human vision that our eyes often focus limited attention on the important local areas rather
than the whole scope. Thus, it can save computational resources and capture the essential information
quickly.

The self-attention mechanism in Vaswani et al. (2017) is defined as follows:

Attention(Q,K,V) = softmax
(
QKT
√
dm

)
V , (2)
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Table 1. Optimal hyperparamerters in our transformer model.

Hyperparameter Optimal Value Hyperparameter Optimal Value

Encoder/Decoder Layer 1 Learning Rate 0.001
Attention Head 2 Batch Size 32
Embedding Dimension 32 Drop Rate 0.1
Hidden Size 16

Figure 5. Mortality rates in theUK:X = {xt,a : 1950 ≤ t ≤ 2019, 0 ≤ a ≤ 100}. (a) 3D-distribution ofmortality rates in theUK. and
(b) Log-mortality rates over time for each age.

whereQ ∈ R
T×dm ,K ∈ R

T×dm andV ∈ R
T×dm are query, key and valuematrices respectively, which

are outputs of three different linear layers with the same input. The dot product ofQ andKT measures
the similarity between query and key. Then, the attention is calculated by the weighted average of the
corresponding value V. Figure 4 presents the structure of the self-attention mechanism.

In practice, Transformer concatenatesmultiple self-attention together, calledmulti-head attention,
to improve the performance further. Each attention function is executed in parallel with the respective
projected versions of the query, key, and value matrices. The multi-head attention can be expressed
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Figure 6. The data generation process of inputs and targets.

Figure 7. The MSE loss of different deep learning methods within 100 epochs. (a) UK. (b) France. (c) Italy. (d) Spain. (e) Japan. (f )
Denmark. (g) Canada and (h) Finland.

as follows:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO,

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i )

where i = 1, . . . , h andWQ
i ,W

K
i ,W

V
i are weights of corresponding networks.

4. Experiments

4.1. Data description

In this section, we evaluate the performance of Transformer on mortality prediction. Here, we con-
sider mortality datasets for eight countries, namely the United Kingdom (UK), France, Italy, Spain,
Japan,Denmark,Canada, andFinland, as referred to inNigri et al. (2019), Perla et al. (2021), Schnürch
& Korn (2022) and Shi (2021). The data covers the period from 1950 to 2019, which is determined by
the availability of data in the HMD. This paper ignores the mortality data of centenarians due to the
limited observations. Figure 5 presents the distribution of mortality rates in the UK as an example.
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Table 2. The means and variances of three indicators on the training sets for eight countries.

Country Models MAE RMSE MAPE

UK RNN 0.1288(3.66) 0.1992(5.26) 2.55%(2.83)
LSTM 0.1110(2.15) 0.1552(3.84) 2.53%(1.42)
CNN 0.0988(3.65) 0.1375(5.33) 2.44%(2.34)
Transformer 0.0600(0.95) 0.0854(1.04) 1.22%(0.22)

France RNN 0.1202(3.01) 0.1598(6.48) 2.28%(1.85)
LSTM 0.1089(1.11) 0.1178(1.31) 3.12%(0.95)
CNN 0.1399(3.02) 0.1772(4.11) 2.67%(1.54)
Transformer 0.0339(0.62) 0.0671(0.74) 0.98%(0.20)

Italy RNN 0.1427(4.19) 0.2202(4.02) 2.87%(2.54)
LSTM 0.1178(2.29) 0.1458(2.33) 2.39%(1.93)
CNN 0.1320(3.13) 0.1871(3.46) 3.21%(2.35)
Transformer 0.0749(0.79) 0.0974(0.82) 1.28%(0.31)

Spain RNN 0.1358(3.23) 0.2045(4.02) 2.59%(2.42)
LSTM 0.1070(2.10) 0.1561(2.00) 2.21%(1.86)
CNN 0.1592(2.22) 0.2119(2.75) 3.22%(2.99)
Transformer 0.0882(1.19) 0.1398(1.98) 1.54%(0.54)

Japan RNN 0.1329(3.24) 0.1682(4.21) 2.08%(2.98)
LSTM 0.0942(1.68) 0.1119(1.90) 1.99%(0.82)
CNN 0.1100(3.32) 0.1301(5.32) 2.30%(3.64)
Transformer 0.0641(0.15) 0.0860(0.09) 1.26%(0.04)

Denmark RNN 0.1897(4.11) 0.3132(3.75) 3.54%(2.65)
LSTM 0.1898(1.53) 0.2927(1.75) 3.01%(2.03)
CNN 0.1622(1.07) 0.2397(1.64) 3.23%(1.53)
Transformer 0.1243(0.77) 0.1934(0.85) 2.24%(0.33)

Canada RNN 0.0798(3.53) 0.1211(3.75) 2.17%(2.53)
LSTM 0.0977(1.44) 0.1314(1.86) 1.98%(1.07)
CNN 0.1119(2.45) 0.1622(3.67) 2.44%(3.44)
Transformer 0.0601(0.91) 0.0838(0.76) 1.34%(1.02)

Finland RNN 0.1692(7.24) 0.2652(7.42) 3.51%(5.96)
LSTM 0.1618(3.82) 0.0273(2.64) 2.97%(4.10)
CNN 0.1733(3.64) 0.2372(3.66) 4.11%(2.64)
Transformer 0.0622(0.41) 0.0982(0.67) 1.97%(0.13)

Notes: The variances of MSE, RMSE, and MAPE are on the order of 10−5.

4.2. Hyperparameter setting

Prior to training our model, we carefully consider the selection of hyperparameters. These can be
divided into two categories: some are unique to our Transformer models, such as the number of
attention heads, encoder and decoder layers, while others are common to deep learningmodels, such
as learning rate and batch size.

Figure 3 presents the structure of the Transformermodel. Given the limited sample size of mortal-
ity rates in HMD, we aim to avoid overfitting by constraining the complexity of the model. To achieve
a simple structure, we set the number of encoder and decoder layers to N = 1, and the number of
attention heads in the multi-attention heads module to 2. Additionally, we set the embedding dimen-
sion to 32 and the hidden size in the feedforward network to 16 by referring to existing Transformer
models in the literature (Vaswani et al. 2017, Wang et al. 2022).

For common hyperparameters in deep learning models, we explore a range of values for each
parameter. Specifically, we consider learning rates ranging from 0.001 to 0.1, and batch sizes of 16, 32,
64, or 128. Besides, we make use of the dropout technique to prevent overfitting (Hinton et al. 2012)
and test drop rates within the interval of 0.1 to 0.5. The optimal hyperparameters are selected based
on their performance on the training set, with preference given to the set that results in the lowest
loss function. Table 1 displays the optimal hyperparameters selected for our Transformer model.
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Figure 8. The predition of log-mortality for eight countries in 2019. (a) UK. (b) France. (c) Italy. (d) Spain. (e) Japan. (f ) Denmark. (g)
Canada and (h) Finland.

4.3. Training

By referring to Shi (2021), we split the dataset into the training and testing sets. The training set ranges
from 1950 to 2000 and is used to train the predictionmodel. The testing set ranges from 2001 to 2019
and is used to evaluate the performance of forecasting.

Let Xtrain = (xt,a)T×A be the training set, where T = 51 and A = 101. Here xt,a is the log-
mortality rate at age a in the calendar year t. We consider a moving window technique to construct
the inputs and targets. Figure 6 presents the data generation process of inputs (marked with blue) and
targets (marked with red). We use the sequence that contains information of all ages to predict the
mortality at the next state.

The loss function calculates the mean squared error (MSE) between the predicted and true values
to evaluate the fitness ofmodels. Figure 7 presents the variation ofMSEwithin 100 epochs. In all eight
countries, the MSE of the Transformer model exhibits significant downward trends and converges
faster than othermethods. This can be attributed to its self-attentionmechanism (Vaswani et al. 2017),
which can be trained in parallel and makes it easier to obtain global information. In contrast, tradi-
tional sequence-based models such as LSTMs and CNNs require sequential processing of each time
step, resulting in slower convergence and less effective modeling of long-term dependencies.

To account for the uncertainty in the training process of deep learning models, we performed
10 independent runs of learning and validation for each dataset. Three common indicators, i.e.
root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error
(MAPE), are used to evaluate the prediction performance of each model:

MAE = 1
T(A + 1)

T∑
t=1

A∑
a=0

|ŷt,a − yt,a|,

MAPE = 1
T(A + 1)

T∑
t=1

A∑
a=0

| ŷt,a − yt,a
yt,a

|,
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Table 3. The means and variances of three indicators on the testing sets for eight countries.

Country Models MAE RMSE MAPE

UK LC 0.1312 0.1627 3.01%
RNN 0.1293(4.01) 0.2035(6.77) 2.71%(2.94)
LSTM 0.1126(3.44) 0.1587(4.22) 2.36%(1.12)
CNN 0.1080(5.98) 0.1390(6.48) 2.87%(2.64)
Transformer 0.0716(0.89) 0.1029(1.09) 1.63%(0.23)

France LC 0.1508 0.2153 2.65%
RNN 0.1209(3.96) 0.1605(5.77) 2.38%(2.03)
LSTM 0.0997(1.60) 0.1290(1.19) 1.95%(0.94)
CNN 0.1406(6.36) 0.1860(7.65) 2.70%(1.11)
Transformer 0.0684(0.82) 0.0941(0.80) 1.38%(0.27)

Italy LC 0.1422 0.2132 2.66%
RNN 0.1453(6.28) 0.2212(4.52) 2.51%(2.32)
LSTM 0.1149(2.41) 0.1618(1.10) 2.12%(2.01)
CNN 0.1509(2.79) 0.1996(3.67) 2.71%(2.19)
Transformer 0.8585(0.83) 0.1285(0.78) 1.58%(0.28)

Spain LC 0.1547 0.2174 3.17%
RNN 0.1362(4.21) 0.2051(4.23) 2.40%(2.32)
LSTM 0.1125(1.92) 0.1657(2.05) 2.01%(1.98)
CNN 0.1781(2.02) 0.2594(2.58) 3.19%(3.10)
Transformer 0.1074(1.52) 0.1575(2.15) 1.96%(0.52)

Japan LC 0.3060 0.3968 5.06%
RNN 0.1331(3.98) 0.1692(5.00) 2.10%(2.88)
LSTM 0.0950(1.55) 0.1238(2.06) 2.19%(0.67)
CNN 0.1124(4.90) 0.1399(5.64) 2.43%(3.73)
Transformer 0.0667(0.19) 0.1101(0.06) 1.31%(0.06)

Denmark LC 0.3074 0.4086 5.29%
RNN 0.2082(3.90) 0.3362(3.56) 3.65%(2.75)
LSTM 0.1902(1.27) 0.2934(2.03) 3.26%(1.52)
CNN 0.1883(1.23) 0.2755(1.86) 3.37%(1.75)
Transformer 0.1410(0.45) 0.2502(0.83) 2.44%(0.43)

Canada LC 0.1101 0.1587 2.36%
RNN 0.0974(3.64) 0.1351(3.64) 2.11%(2.53)
LSTM 0.0982(1.46) 0.1412(1.75) 1.98%(1.04)
CNN 0.1216(2.86) 0.1638(3.54) 2.48%(3.75)
Transformer 0.0815(0.92) 0.1086(0.64) 1.64%(1.32)

Finland LC 0.1745 0.2684 3.63%
RNN 0.1899(10.24) 0.2868(8.23) 3.53%(6.79)
LSTM 0.1691(3.92) 0.2889(3.79) 2.91%(6.09)
CNN 0.1843(3.54) 0.2584(3.13) 4.09%(2.53)
Transformer 0.0853(0.24) 0.1229(0.13) 2.57%(0.10)

Notes: The variances of MSE, RMSE, and MAPE are on the order of 10−5.

RMSE =
√√√√ 1

T(A + 1)

T∑
t=1

A∑
a=0

(ŷt,a − yt,a)2,

where ŷi is the predicted value of log-mortality, and yi is the corresponding true value. Here RMSE
andMAEmeasure the absolute errors between the predicted and true values, whileMAPE is a relative
indicator to measure the percentage of errors. Table 2 summarizes the means and variances of these
indicators on the training sets for the eight countries. It demonstrates that our Transformer model
has lower prediction errors and more robust outputs compared to other deep learning methods.



12 J. WANG ET AL.

Figure 9. RMSE(a) calculated on age for predicted data. (a) UK. (b) France. (c) Italy. (d) Spain. (e) Japan. (f ) Denmark. (g) Canada and
(h) Finland.

Figure 10. RMSE(t) calculated on year for predicted data. (a) UK. (b) France. (c) Italy. (d) Spain. (e) Japan. (f ) Denmark. (g) Canada
and (h) Finland.

4.4. Forecasting and evaluation

Based on the trained models, we predict mortality rates from 2001 to 2019 in eight countries. As
an example, Figure 8 presents the prediction of log-mortality in 2019. They demonstrate that our
Transformer model provides smoother predictions that are closer to the true values compared with
traditional methods.

Similarly, taking into account the uncertainty of deep learning models, Table 3 summarizes the
means and variances of RMSE, MAE, andMAPE on the testing sets based on 10 independent runs of
model training.We include the classic LCmodel in the scope of model comparison in the testing sets.
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Table 4. The average of RMSE(a) and RMSE(t) for each model.

Country Indicators LC RNN LSTM CNN Transformer

UK RMSE(a) 0.1537 0.1834 0.1369 0.1264 0.0870
RMSE(t) 0.1669 0.1509 0.1325 0.1656 0.1006

France RMSE(a) 0.1736 0.1406 0.1218 0.1314 0.0911
RMSE(t) 0.2206 0.1326 0.1454 0.1330 0.0915

Italy RMSE(a) 0.1690 0.1789 0.1348 0.1666 0.1025
RMSE(t) 0.2256 0.1546 0.1960 0.1963 0.1247

Spain RMSE(a) 0.2210 0.1702 0.1347 0.1969 0.1296
RMSE(t) 0.2208 0.1571 0.2560 0.1839 0.1507

Japan RMSE(a) 0.3395 0.1412 0.1123 0.1258 0.0833
RMSE(t) 0.4083 0.1167 0.1371 0.1455 0.1038

Denmark RMSE(a) 0.3609 0.2515 0.2232 0.2212 0.1792
RMSE(t) 0.3862 0.2901 0.2901 0.2715 0.2413

Canada RMSE(a) 0.1291 0.1120 0.1197 0.1419 0.1002
RMSE(t) 0.1526 0.1313 0.1362 0.1563 0.1143

Finland RMSE(a) 0.2069 0.2273 0.2173 0.2001 0.1714
RMSE(t) 0.2637 0.2819 0.2548 0.2821 0.2303

Since the parameter estimation of the LCmodel is deterministic, it produces unique predictions in all
10 independent runs, and therefore there is no variance. Table 3 demonstrates that our Transformer
model also outperforms the classic LC model and other deep learning models in the testing sets. The
fact that the proposed model performs well on both the training and testing sets indicates that there
is no overfitting problem during model training.

Besides, we evaluate the prediction performance from the perspectives of age and year, respectively.
By referring to Li & Lu (2017), we define the RMSE at age a, RMSE(a), and the RMSE in year t,
RMSE(t), as follows:

RMSE(a) =
√√√√ 1

T

T∑
t=1

(ŷt,a − yt,a)2,

RMSE(t) =
√√√√ 1

A + 1

A∑
a=0

(ŷt,a − yt,a)2.

Figures 9 & 10 present the RMSE at each a and each t, respectively. Figure 9 illustrates that the
Transformer model exhibited lower prediction errors at most ages, especially in the high age group
(a ≥ 40). Meanwhile, Figure 10 demonstrates that the Transformer model has a significant advan-
tage in short-term predictions. However, in long-term predictions, it was outperformed by the RNN
in a few countries, including the UK, Japan, and Canada. Overall, Figures 9 and 10 indicate that
our Transformer model performed well across most ages and years. Moreover, Table 4 reveals that
the Transformer model has the lowest average RMSE(a) and RMSE(t) values among all the models,
indicating clear advantages in terms of prediction accuracy.

5. Conclusions

This paper evaluates the performance of Transformer in predicting mortality rates. It is a new appli-
cation of Transformer in time series forecasting. Compared to the classical LC model and other
traditional deep learning models, Transformer exhibits a strong ability to capture the underlying spa-
tial and temporal features in the age-year structure ofmortality rates. Through empirical experiments
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across eight countries, we demonstrate that Transformer has higher prediction accuracy than tradi-
tional methods, especially in the high age group. This is particularly relevant for policymakers, given
the growing concern over the aging population and its impact on public health. Accurately predicting
mortality rates in this demographic is essential for developing effective health policies and allocation
of resources. This paper provides a powerful forecasting tool for insurance companies and policy
makers.

The COVID-19 has significantly altered the world inmanyways over the last few years. It has a far-
reaching influence on the trend ofmortality rates. The last similar eventmay have been the 1918 Spain
Flu. During this global pandemic, we found that, in addition to the disease itself, the public health
policies and disease control measures implemented by governments also had significant impacts on
population mortality rates. How to incorporate these unstructured information into mortality rate
prediction remains a challenge. In future work, we plan to investigate the use of deep learning frame-
works to integrate both numeric data and unstructured information, in order to make more precise
and accurate predictions.
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