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High-dimensional correlation matrix estimation
for Gaussian data: a Bayesian perspective∗

Chaojie Wang and Xiaodan Fan
†

Gaussian covariance or precision matrix estimation is a
classical problem in high-dimensional data analyses. For pre-
cision matrix estimation, the graphical lasso provides an ef-
ficient approach by optimizing the log-likelihood function
with L1-norm penalty. Inspired by the success of graphical
lasso, researchers pursue analogous outcomes for covariance
matrix estimation. However, it suffers from the difficulty of
non-convex optimization and a degeneration problem when
p > n due to the singularity of the sample covariance matrix.
In this paper, we fix the degeneration problem by adding an
extra constraint on diagonal elements. From the Bayesian
perspective, a grid-point gradient descent (GPGD) algo-
rithm together with the block Gibbs sampler is developed to
sample from the posterior distribution of the correlation ma-
trix. The algorithm provides an effective approach to draw
samples under the positive-definite constraint, and can ex-
plore the whole feasible region to attain the mode of the
posterior distribution. Simulation studies and a real applica-
tion demonstrate that our method is competitive with other
existing methods in various settings.

Keywords and phrases: Correlation matrix estimation,
Positive-definiteness, Non-convex optimization, Bayesian
analysis.

1. BACKGROUND

Gaussian covariance or precision matrix estimation is a
classical problem in high-dimensional data analyses. Un-
der the Gaussian assumption, an estimator can be derived
from the likelihood of observed data by the maximum like-
lihood estimation (MLE) criterion. In traditional multivari-
ate Gaussian analyses, MLE of the covariance matrix Σ is
proportional to the sample covariance matrix S when the
sample size n is larger than the number of variables p. How-
ever, for high-dimensional cases, S is singular when p > n,
leading the maximum of log-likelihood function to infinity
[3]. Thus, it is necessary to introduce additional constraints
to the objective function.
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[22] proposed the Gaussian graphical model, and illus-
trated the relationship between sparsity of the precision
matrix Ω = Σ−1 and conditional independence of corre-
sponding variables. As a consequence, it motivates many re-
searchers to explore the sparse precision matrix estimation.
[9] proposed an efficient algorithm called graphical lasso,
which imposes L1-norm penalty on entries of Ω. After that,
many penalized approaches with different types of penal-
ties on Ω are proposed, such as adaptive graphical lasso [6],
SCAD [7, 13], MCP [23], CLIME [4] and so on.

Graphical lasso achieved great success in precision matrix
estimation. However, sparsity in a precision matrix usually
does not result in a sparse covariance matrix. From the per-
spective of covariance matrix estimation, [2] followed the
analogous idea to impose L1 penalty on entries of Σ di-
rectly. The proposed estimator works well when n is large,
but suffer from a degeneration problem when p > n due
to the singularity of the sample covariance matrix. [2] sug-
gested to replace S with S + εI for some positive ε when
p > n, but the performance was still poor. Since the ob-
jective function in [2] is non-convex and may have multiple
local maxima, it is hard to develop an effective algorithm
to solve the optimization problem directly. Under this cir-
cumstance, Bayesian analysis provides a new perspective for
this traditional estimation problem. It is well-known that
L1 penalty is equivalent to the Laplacian prior under the
Bayesian framework. [21] and [12] proposed the Bayesian
adaptive graphical lasso for precision matrix estimation. Re-
cently, [10] considered to estimate a high-dimensional sparse
precision matrix, in which adaptive shrinkage and sparsity
are induced by a mixture of Laplace priors. With the similar
ideas, [20] proposed the Bayesian covariance graphical lasso
as a Bayesian version of the covariance graphical lasso pro-
posed by [9]. They developed a coordinate descent algorithm
to sample from the posterior distribution of the covariance
matrix. However, they still suffered from the degeneration
problem when p > n. For more details, [17] and [8] provided
an overview of the works on covariance matrix estimation
in the last decades.

The degeneration problem in [2] is resulted from the
fact that the covariance matrix is not scale-invariant. [5]
pointed that the ignorance of this prior information incurs
p additional parameters in the diagonal entries of the esti-
mate. Actually, it is a common setting to estimate variances
with sample estimators. Then, according to the variance-
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correlation decomposition, we only need to focus on the cor-
relation matrix estimation. This paper contributes to the
field in the following aspects: (a) we fix the degeneration
problem by imposing an extra constraint on the diagonal
entries of the estimate; (b) we develop a grid-point gradient
descent algorithm together with the block Gibbs sampler
to sample from the posterior distribution of the correlation
matrix; (c) we show that the proposed algorithm provides
an effective approach to draw samples under the positive-
definite constraint, and can explore the whole feasible re-
gion to attain the mode of the posterior distribution; (d)
our method is competitive with other existing methods in
both simulations and real applications.

This paper is organized as follows: Section 2 introduces
the estimator and the algorithms in details; Section 3 per-
forms extensive simulation studies to compare our method
with existing approaches; Section 4 provides a real applica-
tion; Section 5 concludes the paper.

2. METHODS

The observation Xn×p is a data set comprising n sam-
ples associated with p variables. Let Xi, i = 1, · · · , n, be
i.i.d samples and follow a p-dimensional normal distribution
Np(0,Σ), where the mean vector is assumed to be zero’s
without loss of generality and Σ = (σij)p×p is an unknown
covariance matrix. Data following a general p-dimensional
normal distribution can be reduced to our problem by cen-
tralization. Then the log-likelihood function of observed
data is

�(Σ) = −np

2
log 2π − n

2
log detΣ− n

2
tr(Σ−1S),

where S = 1
nX

′X is the sample covariance matrix given
the zero-mean assumption. In this paper, we are interested
in estimating the covariance matrix with fixed p and finite
sample size n when p > n.

[2] proposed the following penalized log-likelihood
method with L1 penalty on entries of Σ directly:

Minimize
Σ�0

log detΣ+ tr(Σ−1S) + ρ||Σ||1,(1)

where ρ is a nonnegative tuning parameter and ||Σ||1 =∑
i �=j |σij |. They developed a majorization-minimization ap-

proach to solve Equation 1. However, it meets the degener-
ation problem when p > n. Actually, unlike the graphical
lasso, imposing L1 penalty onΣ can not ensure the existence
of optima in Equation 1. Since S is not of full rank when
p > n, there exists an eigenvector v �= 0 such that Sv = 0.
Let U =

∑p−1
j=1 uju

′
j be an orthogonal matrix where uj ’s

are eigenvectors satisfying uj ⊥ v for j = 1, · · · , p − 1. An
estimator can be constructed as

Σ̂ = αvv′ +U.

Then we have

log det Σ̂ = log

(
α

p−1∏
j=1

1

)
= logα,

tr(Σ̂
−1

S) = tr

((
1

α
vv′ +U

)
S

)
= tr(US).

Thus for Equation 1,

logα+ tr(US) + ρ||αvv′ +U||1 → −∞

as α → 0. The objective function goes into infinity when
p > n.

In nature, the degeneration problem is resulted from the
fact that the covariance matrix is not scale-invariant. [5]
pointed that the ignorance of this prior information incurs
p additional parameters in the diagonal entries of the esti-
mate. Based on this idea, we propose a modified estimator
by adding an extra constraint to Equation 1. The objective
function can be expressed as follows:

Minimize
Σ�0

log detΣ+ tr(Σ−1S) + ρ||Σ||1

s.t. σjj = sjj , j = 1, · · · , p.
(2)

Actually, according to the variance-covariance decompo-
sition, Σ = DΓD, where D is the diagonal matrix of stan-
dard deviations and Γ is the correlation matrix with diag-
onal elements equal to 1. Thus, we may estimate D and
Γ separately [1]. If D is estimated by the sample variance

as common choices, i.e., D̂ = diag(S)
1
2 , then we can focus

on the estimation of the correlation matrix Γ = (γij)p×p.
By replacing the sample covariance matrix S with the sam-
ple correlation matrix R, the problem can be rewritten as
follows:

Minimize
Γ�0

log detΓ+ tr(Γ−1R) + ρ||Γ||1

s.t. γjj = 1, j = 1, · · · , p,
(3)

where R = D̂−1SD̂−1. Since S = 1
nX

′X, we have R =
1
nY

′Y, where Y = XD̂−1 is the data after normalization.
The following sections focus on the estimation of Γ in Equa-
tion 3 for convenience.

2.1 Bayesian perspectives

Note that the objective function in Equation 3 is non-
convex and may have multiple local maxima. Traditional
algorithms are hard to solve this optimization problem. In-
spired by the ideas in [20], we propose a Bayeisan algorithm
to sample from the posterior distribution of Γ. It is well-
known that L1 penalty is equivalent to Laplacian prior in
Bayesian perspectives. Thus, the optimum of Equation 3 can
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be pursued by solving the following Bayesian model:

p(Y|Γ) ∝ |Γ|−n/2 exp

(
−tr

(
n

2
Γ−1R

))
,

p(Γ|λ) ∝
∏
i<j

h(γij |λ) ·
p∏

j=1

1{γjj=1} · 1Γ�0,

where h(x|λ) represents the double exponential (laplace)
density function with the form λ/2 exp(−λ|x|), and Γ � 0
denotes that Γ is positive-definite. Then the posterior dis-
tribution can be written as

p(Γ|Y, λ) ∝|Γ|−n/2 exp

(
−tr

(
n

2
Γ−1R

))

·
∏
i<j

h(γij |λ) ·
p∏

j=1

1{γjj=1} · 1Γ�0.

(4)

The mode of posterior distribution of Γ is equivalent to the
estimate in Equation 3 with ρ = λ/n. Thus the problem is
transformed into the search for the maximum a posterior of
Equation 4.

2.2 Posterior inference

We adopt the idea of block Gibbs sampler to update Γ one
column and one row at a time while holding all of the rest
elements in Γ fixed. Without loss of generality, we focus on
the last column and last row. Partition Γ and R as follows:

Γ =

(
Γ11 γ12

γ′
12 γ22

)
, R =

(
R11 r12
r′12 1

)
,

where Γ11 and R11 are the submatrix of the first p− 1 rows
and columns.

Conditioning on Γ11 and γ22 = 1,

p(γ12|Γ11, γ22 = 1,Y, λ)

∝ |Γ|−n/2 exp

(
−tr

(
n

2
Γ−1R

))
· h(γ12|λ) · 1Γ�0

∝ |Γ|−n/2 exp

(
−tr

(
n

2
Γ−1R

))
· exp

(
−λ

p−1∑
j=1

|γpj |
)

· 1Γ�0.

In the iterative procedure, Γ � 0 leads to Γ11 � 0. Given
γ22 = 1, the next proposed Γ̃ is positive-definite if and only
if the proposed γ̃12 satisfies that 1 − γ̃′

12Γ
−1
11 γ̃12 > 0. Let

H = 1 − γ̃′
12Γ

−1
11 γ̃12, then the posterior distribution of γ12

can be written as

p(γ12|Γ11, γ22 = 1,Y, λ)

∝ |Γ|−n/2 exp

(
−tr

(
n

2
Γ−1R

)
− λ

p−1∑
j=1

|γpj |
)

· 1H>0.
(5)

A grid-point gradient descent algorithm is developed to
sample from the conditional posterior distribution in Equa-
tion 5. The steps are summarized in Algorithm 1. Basically,

we propose a new sample γ̃12 from the grid points around
the original sample γ12. The proposal probability of the grid
points, which do not satisfy the positive-definiteness, are
set to be 0. An acceptance ratio is designed to ensure the
Markov chain is reversible.

Algorithm 1 Grid-Point Gradient Descent Algorithm
(GPGD)

1: Sample a random tiny step ε ∼ Uniform(0, 0.05).
2: Find all 2(p− 1) grid points around γ12 at radius ε, i.e.,

3: γ
(h)
12 = γ12 + εIh, h = 1, · · · , p− 1,

4: γ
(h)
12 = γ12 − εIh−p+1, h = p, · · · , 2(p− 1),

5: where Ih is a p−1-dimensional vector with the h-th element
equal to 1 and others equal to 0.

6: Calculate the posterior probability p(γ12|Γ11, γ22 = 1,Y, λ)

for every γ
(h)
12 .

7: Propose the new γ̃12 with maximal posterior.
8: Calculate the posterior probability p(Γ̃|Y, λ) based on γ̃12.
9: Accept the new proposal with probability min(1, r) where

10: r = exp
{
log p(Γ̃|Y,λ)

p(Γ|Y,λ)
·Qt

}

Algorithm 1 draws samples of γ12 from the posterior
distribution of Equation 5. The entire procedures of sam-
pling from the posterior of Γ are concluded in Algorithm 2.
Algorithm 2 implements a random scan Gibbs sampler to
update the parameters column by column [15]. The initial
value of Γ must be a symmetric positive-definite matrix
with diagonal elements equal to 1. The default choice is
(1 − π)diag(R) + πR where π ∈ [0, 1). The iteration steps
are repeated until convergence.

Algorithm 2 Block Gibbs Algorithm

1: Initial Γ(0).
2: for t-th iteration do
3: Sample j ∈ {1, · · · , p} uniformly
4: Sample γ̃12 instead of γ12 in the j-th column and row of

Γ(t−1) by implementing Algorithm 1.
5: end for

In Algorithm 1, Qt is a tuning parameter to accelerates
the speed of convergence, where t = 1, 2, · · · , T denotes the
t-th iteration in Algorithm 2. It is set as a large value ini-
tially and then decays to 1. Specifically, the total iterations
T = 1500p is used for our simulation studies and the real
application in this paper. Then, we consider Qt a linearly
decreasing sequence from 10 to 1 in the first 1000p iterations
and remains 1 in the last 500p iterations. Thus, the sampling
procedure will be fast at the beginning and converge to the
posterior distribution finally.

2.3 Theoretical results

This section shows that Algorithm 2 is reversible and
can explore the whole feasible space to attain the mode of
the posterior distribution. For convenience, a concept called
positive-definite path is defined as follows:
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Definition 1 (Positive-definite Path). For two positive-
definite matrices with the same dimension, A and B, if there
exists a continuous evolution from A to B and all states in
the evolution path remain positive-definite, this evolution is
called a positive-definite path and denoted by A → B.

Then we have the following theorem:

Theorem 1. For any two positive-definite matrices
Ap×p and Bp×p, there exists a positive-definite path that
Ap×p → Bp×p.

See Appendix A for detailed proofs of Lemmas, Corollar-
ies and Theorems.

Corollary 1. For any two positive-definite matrices Ap×p

and Bp×p with the same diagonal elements, i.e., ajj =
bjj , j = 1, · · · , p, there exists a positive-definite path that
Ap×p → Bp×p without changing the diagonal elements.

According to Corollary 1, for any symmetric positive-
definite matrix with diagonal elements equal to 1, there ex-
ists a positive-definite path from the initial Γ(0) to it with-
out changing the diagonal elements. Then we show that this
positive-definite path can be achieved by Algorithm 2.

Lemma 1. Define

Jh =

(
0 Ih

I ′
h 0

)
, h = 1, · · · , p− 1,

where Ih is a (p − 1)-dimensional vector with the h-th ele-
ment equal to 1 and others equal to 0. If Γ is a symmetric
positive-definite matrix, then Γ± εJh is positive-definite for
any h as ε → 0.

Theorem 2. Any symmetric positive-definite matrix with
diagonal elements equal to 1 can be attained by Algorithm 2.

Algorithm 2 provides an effective approach to draw sam-
ples under the positive-definite constraint. All proposed
samples in the procedure remain positive-definite. Besides,
it is reversible and can explore the whole feasible space to
attain the mode of posterior distribution. Thus, it can solve
the non-convex optimization problem in Equation 3.

3. SIMULATIONS

In this section, simulation studies are conducted to com-
pare the performance of our method with other existing ap-
proaches. The compared approaches include the majorize-
minimize (MM) algorithm [2], the classical graphical lasso
(GLasso) [9], the log-likelihood with SCAD penalty on the
precision matrix (SCAD) [6], the log-likelihood with MCP
penalty on the precision matrix (MCP) [23], the positive
definite sparse covariance estimators (PDSCE) under the
Frobenius norm [18], and the shrinkage estimator [14]. Two
criteria are used to evaluate the performance of estimators:
penalized negative log-likelihood � and Matthews correlation
coefficient (MCC) [6].

Penalized negative log-likelihood �, which measures the
fitness of estimates to the observed data with penalty, is
defined as follows:

�(Σ) = log detΣ+ tr(Σ−1S) + ρ||Σ||1.

Here �(Σ) not only measures the performance of the correla-
tion matrix estimator, but also considers the estimations of
variances. The smaller �, the better fitness to the observed
data. So it is fair to compare our GPGD with other methods
that focus on covariance matrix estimation.

MCC, which measures the accuracy of sparsity specifica-
tion, i.e., how many zero correlations are classified as non-
zeros and how many non-zero correlations are classified as
zeros, is defined as follows:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, TN, FP and FN are the numbers of true posi-
tives, true negatives, false positives and false negatives, re-
spectively. Here the larger MCC means more accurate spec-
ification of sparsity.

In the following simulation studies, two types of common-
used sparse structure are considered. The synthesized data
are generated from a given data model with a known corre-
lation matrix. Considering the uncertainty of Monte Carlo
simulations, the experiments, including the data synthesis,
are repeated for 100 times independently in each setting.
The means and standard errors of � and MCC are reported
for comparison. See the supplementary materials for the de-
tailed R codes, http://intlpress.com/site/pub/files/ supp/
sii/2021/0014/0003/SII-2021-0014-0003-s003.zip.

3.1 Case 1: block-diagonal models

In this case, data are generated with a block-diagonal co-
variance matrix referring to [2] and [18]. The true covari-
ance matrix is set as Σ = diag(Σ1, · · · ,Σ5), where Σk,
k = 1, · · · , 5, are general dense matrices with dimensions

(p/5) × (p/5). The off-diagonal elements of Σk = (σ
(k)
ij )

are sampled independently from the uniform distribution

(−1, 1), i.e., σ
(k)
ij = σ

(k)
ji ∼ Uniform(−1, 1) for i �= j. The

diagonal elements of Σk are set as a constant so that the
resulting matrix Σ has condition number equal to p as in
[19]. The covariance matrix Σ corresponds to a graph with 5
disconnected cliques of size p/5. See Figure 1 (a) for detailed
structures. Note that the inverse of block-diagonal matrices
are also block diagonal. Thus, the approaches designed for
sparse precision matrices, such as graphical lasso, could be
compared in the same model fairly. The simulation results
are presented in Table 1.

Table 1 demonstrates that our GPGD estimator outper-
forms other approaches on penalized negative log-likelihood
� significantly. It means the GPGD estimator has the best
fitness to the observed data. For MCC, our GPGD is close
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Figure 1. The structures of each model. The red areas denote the diagonal elements. The yellow areas denote the non-zero
off-diagonal elements. The white areas denote the diagonal elements with zeros.

Table 1. The means and standard errors of two criteria across 100 independent experiments for block-diagonal cases, where
the tuning parameter ρ = 0.1

p = 50, n = 25 p = 100, n = 50
� MCC � MCC

GPGD 114.4780(9.1870) 0.6024(0.0031) 350.1483(16.9879) 0.5860(0.0073)
MM 151.3274(12.9590) 0.4513(0.0187) 532.8467(30.2572) 0.4915(0.0082)

GLasso 189.9787(15.8022) 0.1786(0.0325) 718.3091(41.5621) 0.1752(0.0171)
SCAD 187.2170(16.0069) 0.1765(0.0333) 718.3265(42.0373) 0.1757(0.0152)
MCP 184.3702(15.8384) 0.1776(0.0343) 720.2351(41.8870) 0.1765(0.0168)

PDSCE 152.4892(12.1424) 0.5996(0.0057) 462.3246(21.9841) 0.6038(0.0012)
Shrinkage 177.0516(15.2729) 0.1930(0.0358) 661.5784(37.4026) 0.1856(0.0166)

Table 2. The means and standard errors of two criteria across 100 independent experiments for banded cases, where the
tuning parameter ρ = 0.1

p = 50, n = 25 p = 100, n = 50
� MCC � MCC

GPGD 118.9781(9.5368) 0.5860(0.0032) 273.3007(13.7905) 0.7768(0.0047)
MM 158.3069(13.7026) 0.4388(0.0205) 392.8170(23.4201) 0.6852(0.0053)

GLasso 197.8926(17.1376) 0.1752(0.0295) 520.8988(31.4136) 0.3376(0.0213)
SCAD 195.0956(16.8915) 0.1703(0.0345) 521.1440(31.4554) 0.3350(0.0213)
MCP 192.1365(16.7525) 0.1712(0.0371) 523.6765(31.3181) 0.3304(0.0221)

PDSCE 158.3995(12.8966) 0.5841(0.0057) 352.8728(18.2103) 0.7893(0.0007)
Shrinkage 185.0087(16.3894) 0.1721(0.0318) 482.9550(28.9142) 0.3450(0.0193)

to PDSCE and both of them have significant advantages
over others. GLasso, SCAD and MCP methods have been
shown to perform well in estimating sparse precision ma-
trices, but Table 1 demonstrates that they fail to generate
sparse covariance matrix estimators. All of them have poor
performance in MCC.

3.2 Case 2: banded models

In this cases, data are generated with a banded covariance
matrix. The banded model is also a common-used setting
of covariance matrices and considered in [2] and [18]. The
bandwidth of the true covariance matrix Σ = (σij)p×p is
set as 5, i.e., σij = 0 if |i − j| > 5; σij = σji are sampled
independently from the uniform distribution (−1, 1) if 0 <

|i− j| ≤ 5; The diagonal elements of Σ are set as a constant
so that it has condition number equal to p as in [19]. See
Figure 1 (b) for detailed structures. The simulation results
are presented in Table 2. Again, the results show that our
method is competitive with others.

3.3 Case 3: randomly sparse models

For more general cases, we consider a randomly sparse co-
variance matrix referring to [2]. Each non-diagonal element
σij = σji is sampled independently from the uniform distri-
bution (−1, 1), and then is reset as 0 with probability 90%.
So we can obtain a randomly sparse covariance matrix. The
diagonal elements of Σ are set as a constant so that it has
condition number equal to p. See Figure 1 (c) for details.
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Table 3. The means and standard errors of two criteria across 100 independent experiments for randomly sparse cases, where
the tuning parameter ρ = 0.1

p = 50, n = 25 p = 100, n = 50
� MCC � MCC

GPGD 95.7640(7.7047) 0.7662(0.0160) 284.4719(12.3516) 0.7730(0.0102)
MM 123.0414(11.3930) 0.6182(0.0218) 411.9183(21.6392) 0.6799(0.0126)

GLasso 155.1158(13.8076) 0.3129(0.0399) 545.5620(29.2087) 0.3292(0.0219)
SCAD 152.7447(13.9245) 0.3058(0.0376) 545.7803(29.1427) 0.3239(0.0236)
MCP 150.1693(13.7904) 0.3005(0.0396) 548.2684(29.0411) 0.3154(0.0224)

PDSCE 125.4417(10.7832) 0.7613(0.0165) 366.7575(17.0446) 0.7853(0.0086)
Shrinkage 143.1542(13.5374) 0.3151(0.0383) 505.7313(26.8765) 0.3303(0.0242)

The simulation results are presented in Table 3. They draw
similar conclusions with that our method is competitive with
others.

From above three data models, we can conclude that our
GPGD estimator has significant advantages in fitting ob-
served data over other competitors. It also provides a good
sparse property in estimating sparse covariance matrices.
Under the similar framework with majorize-minimize algo-
rithm in [2], the GPGD algorithm provides a better algo-
rithm to attain the optima.

4. APPLICATION ON PORTFOLIO
OPTIMIZATION

In this section, we consider a real application on portfo-
lio optimization. [16] proposed the famous modern portfo-
lio theory (MPT), which models a portfolio of assets with
means and variances of return sequences. Here we work on
an improved version of MPT called minimum variance port-
folio (MVP), proposed by [11].

Given Xn×p is the return dataset of p assets, which is
assumed to follow a multivariate Gaussian distribution with
mean vector μ and covariance matrix Σ, MPV minimizes
the variance of portfolio under a constraint of the lowest
required return μ0, i.e.,

Minimize
w

w′Σw

s.t. w′μ ≥ μ0,

wj ≥ 0, j = 1, 2, · · · , p,
p∑

j=1

wj = 1,

(6)

where w = (w1, · · · , wp)
′ is a weight vector of portfolio. The

solution of Equation 6 is a simple quadratic optimization
with linear constraints. The difficulty is the estimation of
μ and Σ. Here we estimate μ by sample mean of observed
data. And Σ are considered to estimate in different ways,
including our GPGD and compared approaches.

We obtain real financial data from Wind Financial Ter-
minal (WTF). The dataset is the monthly returns of con-
stituent stocks of China Securities Index 100 (CSI100),

which is comprised of the 100 largest companies by market
capitalization in Chinese stock market. The period of data
is considered from 2015 to 2019, totally 60 observations. Af-
ter deleting the stocks with missing observations (suspended
more than one month), it remains 63 stocks (p = 63) in the
pool. The length of train data used to estimate μ and Σ is
36 months (n = 36). Then, according to the optimal portfo-
lio weight solved by Equation 6, we construct the portfolio
and calculate the standard error of portfolio returns in the
following next 12 months as test data. The smaller standard
error means lower risks of portfolio, which is considered bet-
ter in the framework of MVP. Table 4 presents the standard
errors in test data for various approaches to estimate covari-
ance matrix Σ.

Table 4. The standard error (%) of portfolio in the test data

End Month Oct 2019 Nov 2019 Dec 2019

GPGD 4.90 5.09 4.23
MM 5.35 5.57 4.59

GLasso 6.49 6.93 5.51
SCAD 6.25 6.47 4.94
MCP 6.29 6.51 4.94

PDSCE 5.89 6.15 4.95
Shrinkage 6.28 6.54 5.22

Here “End Month” means the last month in the test data.
For example, the end month Dec 2019 represents the test
dataset from Jan 2019 to Dec 2019 (12 months) and the
train dataset from Jan 2016 to Dec 2018 (36 months). To
demonstrate the sensitivity of estimations, we also consider
the moving windows one month ahead for Nov 2019 and
Oct 2019. All of them show that our GPGD estimator pro-
vides a portfolio with the lowest risk and thus has the best
performance.

5. SUMMARY

Gaussian covariance matrix estimation is a basic and clas-
sical problem in high-dimensional areas. There have been
many works on this problem. To make full use of the Gaus-
sian assumption, optimization of penalized negative log-
likelihood functions becomes the mainstream. The differ-
ence among various methods concentrates on the forms of
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penalty terms and the objects of penalty: covariance or pre-
cision matrices. From the perspective of covariance matrices,
[2] imposed L1-norm penalty on entries of Σ directly to pur-
sue the sparsity in covariance matrices. Unfortunately, this
estimator leads to the degeneration problem when p > n.
Due to the non-convexity of objective function, it is hard
to design an efficient algorithm to solve the optimization
directly.

In this paper, we gave our new insights of this classical
problem from a Bayesian perspective. To avoid the degen-
eration problem in [2], an extra constraint is introduced by
fixing the diagonal entries of the estimate to be unity. We
developed an efficient gradient descent algorithm to sample
from the posterior distribution, which may be non-convex
and have multiple local maxima. Theoretically, we show that
this algorithm would remain positive-definite in the whole
sampling procedure. Through simulation studies and a real
application, we compare the performance of our algorithm
with other existing approaches. These empirical evidences
demonstrate that our estimator is competitive with others
in different indices.

Note that although we only compare the point estimate
with existing methods, our Bayesian approach can actually
provide the full posterior distribution. The Bayesian per-
spective also helps to design an efficient algorithm which
guarantees the positive-definiteness along the path. Some
theoretical aspects can be explored in future research. For
example, the consistency of our estimator and the conver-
gence rate of our algorithm are valuable things to explore.

APPENDIX A. THEORETICAL PROOFS

A.1 Theorem 1

Let Δ = B −A. Since A and B = A +Δ are positive-
definite, then for any 0 < η < 1, A+ηΔ = η(A+Δ)+(1−
η)A is positive-definite. Thus there exists a positive-definite

path that A
+ηΔ−−−→ B with η : 0 → 1.

A.2 Corollary 1

If ajj = bjj for j = 1, · · · , p, then the diagonal elements of
Δ = B−A are all 0. Thus, for any 0 < η < 1, the diagonal
elements of A+ ηΔ do not change in the evolution.

A.3 Lemma 1

Here we only prove the case that Γ + εJh is positive-
definite. The other case Γ− εJh is similar.

Partition Γ as follows:

Γ̃ = Γ+ εJh =

(
Γ11 γ12 + εIh

γ′
12 + εI ′

h γ22

)
.

Then apply the block matrix determinant

det(Γ̃) = det(Γ11)(γ22 − (γ′
12 + εI ′

h)Γ
−1
11 (γ12 + εIh))

= det(Γ11)
[
(γ22 − γ′

12Γ
−1
11 γ12)− 2εγ12Γ

−1
11 I

′
h

− ε2I ′
hΓ

−11
11 Ih

]
.

Because Γ is positive-definite, both of the terms det(Γ11)
and (γ22 − γ′

12Γ
−1
11 γ12) are positive. Thus, there must ex-

ist a small ε > 0 that [(γ22 − γ′
12Γ

−1
11 γ12) − 2εγ12Γ

−1
11 I

′
h −

ε2I ′
hΓ

−11
11 Ih] is positive and then det(Γ̃) > 0 when ε → 0.

A.4 Theorem 2

For any targeted matrix Γ̃, there exists a positive-definite

path from initial Γ that Γ
+ηΔ−−−→ Γ̃, where Δ = Γ̃ − Γ and

η : 0 → 1.
In this positive-definite path, we have

Γ+ ηΔ =

⎛
⎜⎜⎜⎝

1 γ12 + ηδ12 · · · γ1p + ηδ1p
γ12 + ηδ12 1 · · · γ2p + ηδ2p

...
...

...
γ1p + ηδ1p γ2p + ηδ2p · · · 1

⎞
⎟⎟⎟⎠ .

Each tiny increment can be decomposed into finite steps
implemented by Algorithm 1, i.e.,

Γ :

⎛
⎜⎜⎜⎝

1 γ12 · · · γ1p
γ21 1 · · · γ2p
...

...
...

γp1 γp2 · · · 1

⎞
⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎝

1 γ12 + ηδ12 · · · γ1p
γ12 + ηδ12 1 · · · γ2p

...
...

...
γ1p γ2p · · · 1

⎞
⎟⎟⎟⎠

→· · · · · · →

⎛
⎜⎜⎜⎝

1 γ12 + ηδ12 · · · γ1p + ηδ1p
γ12 + ηδ12 1 · · · γ2p

...
...

...
γ1p + ηδ1p γ2p · · · 1

⎞
⎟⎟⎟⎠

→· · · · · · →

⎛
⎜⎜⎜⎝

1 γ12 + ηδ12 · · · γ1p + ηδ1p
γ12 + ηδ12 1 · · · γ2p + ηδ2p

...
...

...
γ1p + ηδ1p γ2p + ηδ2p · · · 1

⎞
⎟⎟⎟⎠

=Γ+ ηΔ.

Let η → 0 then ηδij → 0 for all i, j. According to Lemma
1, every step in this decomposition would remain positive-
definite. Thus, any symmetric positive-definite matrix with
diagonal elements equal to 1 can be attained by Algorithm 2.
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